Title : Active site engineering of the epoxide hydrolase from Agrobacterium radiobacter AD1 to enhance aerobic mineralization of cis-1,2-dichloroethylene in cells expressing an evolved toluene ortho-monooxygenase - Rui_2004_J.Biol.Chem_279_46810 |
Author(s) : Rui L , Cao L , Chen W , Reardon KF , Wood TK |
Ref : Journal of Biological Chemistry , 279 :46810 , 2004 |
Abstract :
Chlorinated ethenes are the most prevalent ground-water pollutants, and the toxic epoxides generated during their aerobic biodegradation limit the extent of transformation. Hydrolysis of the toxic epoxide by epoxide hydrolases represents the major biological detoxification strategy; however, chlorinated epoxyethanes are not accepted by known bacterial epoxide hydrolases. Here, the epoxide hydrolase from Agrobacterium radiobacter AD1 (EchA), which enables growth on epichlorohydrin, was tuned to accept cis-1,2-dichloroepoxyethane as a substrate by accumulating beneficial mutations from three rounds of saturation mutagenesis at three selected active site residues, Phe-108, Ile-219, and Cys-248 (no beneficial mutations were found at position Ile-111). The EchA F108L/I219L/C248I variant coexpressed with a DNA-shuffled toluene ortho-monooxygenase, which initiates attack on the chlorinated ethene, enhanced the degradation of cis-dichloroethylene (cis-DCE) an infinite extent compared with wild-type EchA at low concentrations (6.8 microm) and up to 10-fold at high concentrations (540 microm). EchA variants with single mutations (F108L, I219F, or C248I) enhanced cis-DCE mineralization 2.5-fold (540 microm), and EchA variants with double mutations, I219L/C248I and F108L/C248I, increased cis-DCE mineralization 4- and 7-fold, respectively (540 microm). For complete degradation of cis-DCE to chloride ions, the apparent Vmax/Km for the Escherichia coli strain expressing recombinant the EchA F108L/I219L/C248I variant was increased over 5-fold as a result of the evolution of EchA. The EchA F108L/I219L/C248I variant also had enhanced activity for 1,2-epoxyhexane (2-fold) and the natural substrate epichlorohydrin (6-fold). |
PubMedSearch : Rui_2004_J.Biol.Chem_279_46810 |
PubMedID: 15347647 |
Gene_locus related to this paper: agrra-echA |
Substrate | Epichlorohydrin Epoxyhexane |
Gene_locus | agrra-echA |
Rui L, Cao L, Chen W, Reardon KF, Wood TK (2004)
Active site engineering of the epoxide hydrolase from Agrobacterium radiobacter AD1 to enhance aerobic mineralization of cis-1,2-dichloroethylene in cells expressing an evolved toluene ortho-monooxygenase
Journal of Biological Chemistry
279 :46810
Rui L, Cao L, Chen W, Reardon KF, Wood TK (2004)
Journal of Biological Chemistry
279 :46810