Sonesson_2007_Langmuir_23_2706

Reference

Title : Mobility of Thermomyces lanuginosus lipase on a trimyristin substrate surface - Sonesson_2007_Langmuir_23_2706
Author(s) : Sonesson AW , Brismar H , Callisen TH , Elofsson UM
Ref : Langmuir , 23 :2706 , 2007
Abstract :

We have studied the mobility of active and inactive Thermomyces lanuginosus lipase (TLL) on a spin-coated trimyristin substrate surface using fluorescence recovery after photobleaching (FRAP) in a confocal microscopy setup. By photobleaching a circular spot of fluorescently labeled TLL adsorbed on a smooth trimyristin surface, both the diffusion coefficient D and the mobile fraction f could be quantified. FRAP was performed on surfaces with different surface density of lipase and as a function of time after adsorption. The data showed that the mobility of TLL was significantly higher on the trimyristin substrate surfaces compared to our previous studies on hydrophobic model surfaces. For both lipase variants, the diffusion decreased to similar rates at high relative surface density of lipase, suggesting that crowding effects are dominant with higher adsorbed amount of lipase. However, the diffusion coefficient at extrapolated infinite surface dilution, D0, was higher for the active TLL compared to the inactive (D0 = 17.9 x 10(-11) cm2/s vs D0 = 4.1 x 10(-11) cm2/s, data for the first time interval after adsorption). Moreover, the diffusion decreased with time after adsorption, most evident for the active TLL. We explain the results by product inhibition, i.e., that the accumulation of negatively charged fatty acid products decreased the diffusion rate of active lipases with time. This was supported by sequential adsorption experiments, where the adsorbed amount under flow conditions was studied as a function of time after adsorption. A second injection of lipase led to a significantly lower increase in adsorbed amount when the trimyristin surface was pretreated with active TLL compared to pretreatment of inactive TLL.

PubMedSearch : Sonesson_2007_Langmuir_23_2706
PubMedID: 17261037
Gene_locus related to this paper: humla-1lipa

Related information

Gene_locus humla-1lipa

Citations formats

Sonesson AW, Brismar H, Callisen TH, Elofsson UM (2007)
Mobility of Thermomyces lanuginosus lipase on a trimyristin substrate surface
Langmuir 23 :2706

Sonesson AW, Brismar H, Callisen TH, Elofsson UM (2007)
Langmuir 23 :2706