Title : Unraveling the MAX2 Protein Network in Arabidopsis thaliana: Identification of the Protein Phosphatase PAPP5 as a Novel MAX2 Interactor - Struk_2020_Mol.Cell.Proteomics__ |
Author(s) : Struk S , De Cuyper C , Jacobs A , Braem L , Walton A , De Keyser A , Depuydt S , Vu LD , De Smet I , Boyer FD , Eeckhout D , Persiau G , Gevaert K , De Jaeger G , Goormachtig S |
Ref : Mol Cell Proteomics , : , 2020 |
Abstract :
The F-box protein MORE AXILLARY GROWTH 2 (MAX2) is a central component in the signaling cascade of strigolactones (SLs) as well as of the smoke derived karrikins (KARs) and the so far unknown endogenous KAI2 ligand (KL). The two groups of molecules are involved in overlapping and unique developmental processes, and signal-specific outcomes are attributed to perception by the paralogous alpha/beta-hydrolases DWARF14 (D14) for SL and KARRIKIN INSENSITIVE 2/ HYPOSENSITIVE TO LIGHT (KAI2/HTL) for KAR/KL. Additionally, depending on which receptor is activated, specific members of the SUPPRESSOR OF MAX2 1 (SMAX1) - LIKE (SMXL) family control KAR/KL and SL responses. As proteins that function in the same signal transduction pathway often occur in large protein complexes, we aimed at discovering new players of the MAX2, D14 and KAI2 protein network by tandem affinity purification using Arabidopsis cell cultures. When using MAX2 as a bait, various proteins were co-purified among which general components of the Skp1-Cullin-F-box complex and members of the CONSTITUTIVE PHOTOMORPHOGENIC 9 signalosome. Here, we report the identification of a novel interactor of MAX2, a type 5 serine/threonine protein phosphatase, designated PHYTOCHROME-ASSOCIATED PROTEIN PHOSPHATASE 5 (PAPP5). Quantitative affinity purification pointed at PAPP5 as being more present in KAI2 rather than D14 protein complexes. In agreement, mutant analysis suggests that PAPP5 modulates KAR/KL-dependent seed germination in suboptimal conditions and seedling development. Additionally, a phosphopeptide enrichment experiment revealed that PAPP5 might dephosphorylate MAX2 in vivo independently of the synthetic strigolactone analog, rac-GR24. Together, by analyzing the protein complexes to which MAX2, D14 and KAI2 belong, we revealed a new MAX2 interactor, PAPP5, that might act through dephosphorylation of MAX2 to control mainly KAR/KL- related phenotypes and, hence, provide another link with the light pathway. |
PubMedSearch : Struk_2020_Mol.Cell.Proteomics__ |
PubMedID: 33372050 |
Struk S, De Cuyper C, Jacobs A, Braem L, Walton A, De Keyser A, Depuydt S, Vu LD, De Smet I, Boyer FD, Eeckhout D, Persiau G, Gevaert K, De Jaeger G, Goormachtig S (2020)
Unraveling the MAX2 Protein Network in Arabidopsis thaliana: Identification of the Protein Phosphatase PAPP5 as a Novel MAX2 Interactor
Mol Cell Proteomics
:
Struk S, De Cuyper C, Jacobs A, Braem L, Walton A, De Keyser A, Depuydt S, Vu LD, De Smet I, Boyer FD, Eeckhout D, Persiau G, Gevaert K, De Jaeger G, Goormachtig S (2020)
Mol Cell Proteomics
: