Title : Divergent modes of action among cationic allosteric modulators of muscarinic M2 receptors - Trankle_1997_Mol.Pharmacol_51_674 |
Author(s) : Trankle C , Mohr K |
Ref : Molecular Pharmacology , 51 :674 , 1997 |
Abstract :
We tested the hypothesis that structurally related modulators of ligand binding to muscarinic M2 receptors may not use a common recognition site. The applied test compounds are potent allosteric modulators [i.e., two bispyridinium model compounds substituted symmetrically either with phthalimidomethyl (WDuo3) or dichlorobenzyl (Duo3), a phthalimidoethyl-substituted hexamethonium compound (W84), alcuronium, and, for sake of comparison, gallamine]. As introduced by Ellis and Seidenberg as a tool to check for a common allosteric site [Mol. Pharmacol. 42:638-641 (1992)], obidoxime was used to antagonize the actions of the test compounds. The allosteric delay of the dissociation of [3H]N-methylscopolamine ([3H]NMS) from porcine heart muscarinic receptors was measured in 5 mM sodium/potassium phosphate buffer (4 mM Na2HPO4 and 1 mM KH2PO4, pH 7.4) at 23 degrees (control t1/2 = 4 min). The concentration-effect curve of obidoxime, which has a weak potency and submaximal efficacy to allosterically retard [3H]NMS dissociation, was better described with a two-site model than with a one-site model. The concentration-effect curves of the test compounds for the allosteric delay of [3H]NMS dissociation were shifted to the right in the presence of obidoxime, yet to a different extent. For WDuo3, W84, alcuronium, and gallamine, the shift induced by increasing concentrations of obidoxime was compatible with a competitive interplay. The pKb values of obidoxime against these modulators lay in a narrow range from pKb = 4.70 with gallamine to pKb = 4.16 with WDuo3. In contrast, the ability of obidoxime to shift the concentration-effect curve of Duo3 was weak (pA2 = 3.00) and not compatible with a competitive interplay. In conclusion, cationic allosteric modulators may stabilize [3H]NMS binding to M2 receptors by divergent modes of allosteric action. The findings suggest that the M2 receptor protein contains more than one allosteric recognition site on its extracellular face. |
PubMedSearch : Trankle_1997_Mol.Pharmacol_51_674 |
PubMedID: 9106634 |
Trankle C, Mohr K (1997)
Divergent modes of action among cationic allosteric modulators of muscarinic M2 receptors
Molecular Pharmacology
51 :674
Trankle C, Mohr K (1997)
Molecular Pharmacology
51 :674