Title : Two-Dimensional MnO(2) Nanozyme-Mediated Homogeneous Electrochemical Detection of Organophosphate Pesticides without the Interference of H(2)O(2) and Color - Wu_2021_Anal.Chem__ |
Author(s) : Wu J , Yang Q , Li Q , Li H , Li F |
Ref : Analytical Chemistry , : , 2021 |
Abstract :
Traditional peroxidase-like nanozyme-based sensors suffer from self-decomposition and high toxicity of H(2)O(2), as well as the interference of color from nanozymes themselves and testing samples. In this work, we adopt nanozymes (two-dimension (2D) MnO(2) sheets, manganese dioxide nanosheets (MnNS)) with oxidase-like and peroxidase-like properties as advanced catalysts to develop a novel homogeneous electrochemical sensor for organophosphate pesticides (OPs) using dissolved O(2) as a coreactant without the interference of H(2)O(2) and color. Owing to the large surface area and unique catalytic activity of MnNS, a large amount of tetramethylbenzidine (TMB) is catalyzed oxidation, leading to a significantly declined differential pulse voltammetry (DPV) current. Obviously, MnNS display an excellent response to thiocholine, deriving from the catalyzing hydrolysis of acetylthiocholine (ATCh) by acetylcholinesterase (AChE), which switches a homogeneous electrochemical OP detection process based on the depressing AChE activity with a limit of detection (LOD) of 0.025 ng mL(-1). The as-proposed strategy on using nanozymes with oxidase-like and peroxidase-like properties to develop a homogeneous electrochemical sensor will provide a new pathway for improving the performance of nanozyme-based sensors, and the established MnNS-based homogeneous electrochemical sensor will find more applications for OP residue determination in food samples. |
PubMedSearch : Wu_2021_Anal.Chem__ |
PubMedID: 33588528 |
Wu J, Yang Q, Li Q, Li H, Li F (2021)
Two-Dimensional MnO(2) Nanozyme-Mediated Homogeneous Electrochemical Detection of Organophosphate Pesticides without the Interference of H(2)O(2) and Color
Analytical Chemistry
:
Wu J, Yang Q, Li Q, Li H, Li F (2021)
Analytical Chemistry
: