Zengin_2019_Food.Res.Int_123_414

Reference

Title : New insights into the chemical profiling, cytotoxicity and bioactivity of four Bunium species - Zengin_2019_Food.Res.Int_123_414
Author(s) : Zengin G , Paksoy MY , Aumeeruddy MZ , Glamocilja J , Sokovic M , Diuzheva A , Jeko J , Cziaky Z , Rodrigues MJ , Custodio L , Mahomoodally MF
Ref : Food Res Int , 123 :414 , 2019
Abstract :

Bunium species have been reported to be used both as food and in traditional medicines. The scientific community has attempted to probe into the pharmacological and chemical profiles of this genus. Nonetheless, many species have not been investigated fully to date. In this study, we determined the phenolic components, antimicrobial, antioxidant, and enzyme inhibitory activities of aerial parts of four Bunium species (B. sayai, B. pinnatifolium, B. brachyactis and B. macrocarpum). Results showed that B. microcarpum and B. pinnatifolium were strong antioxidants as evidenced in the DPPH, ABTS, CUPRAC, and FRAP assays. B. brachyactis was the most effective metal chelator, and displayed high enzyme inhibition against cholinesterase, tyrosinase, amylase, glucosidase, and lipase. The four species showed varied antimicrobial activity against each microorganism. Overall, they showed high activity against P. mirabilis and E. coli (MIC and MBC <1mg mL(-1)). B. brachyactis was more effective against Aspergillus versicolor compared to the standard drug ketoconazole. B. brachyactis was also more effective than both ketoconazole and bifonazole against Trichoderma viride. B. sayai was more effective than ketoconazole in inhibiting A. fumigatus. B. sayai was most non-toxic to HEK 293 (cellular viability=117%) and HepG2 (cellular viability=104%). The highest level of TPC was observed in B. pinnatifolium (35.94mg GAE g(-1)) while B. microcarpum possessed the highest TFC (39.21 mg RE g(-1)). Seventy four compounds were detected in B. microcarpum, 70 in B. brachyactis, 66 in B. sayai, and 51 in B. pinnatifolium. Quinic acid, chlorogenic acid, pantothenic acid, esculin, isoquercitrin, rutin, apigenin, and scopoletin were present in all the four species. This study showed that the four Bunium species are good sources of biologically active compounds with pharmaceutical and nutraceutical potential.

PubMedSearch : Zengin_2019_Food.Res.Int_123_414
PubMedID: 31284993

Related information

Citations formats

Zengin G, Paksoy MY, Aumeeruddy MZ, Glamocilja J, Sokovic M, Diuzheva A, Jeko J, Cziaky Z, Rodrigues MJ, Custodio L, Mahomoodally MF (2019)
New insights into the chemical profiling, cytotoxicity and bioactivity of four Bunium species
Food Res Int 123 :414

Zengin G, Paksoy MY, Aumeeruddy MZ, Glamocilja J, Sokovic M, Diuzheva A, Jeko J, Cziaky Z, Rodrigues MJ, Custodio L, Mahomoodally MF (2019)
Food Res Int 123 :414