Zhao_2023_Int.J.Biol.Macromol__126552

Reference

Title : Platinum nanoflowers stabilized with aloe polysaccharides for detection of organophosphorus pesticides in food - Zhao_2023_Int.J.Biol.Macromol__126552
Author(s) : Zhao H , Li R , Zhang T , Zhou L , Wang L , Han Z , Liu S , Zhang J
Ref : Int J Biol Macromol , :126552 , 2023
Abstract : Organophosphorus pesticides can inhibit the activity of acetylcholinesterase and cause neurological diseases. Therefore, it is crucial to establish an efficient and sensitive platform for organophosphorus pesticide detection. In this work, we extracted aloe polysaccharide (AP) from aloe vera with the number average molecular weight of 29,271 Da and investigated its reducing property. We prepared aloe polysaccharide stabilized platinum nanoflowers (AP-Pt(n) NFs), their particle size ranges were 29.4-67.3 nm. Furthermore, AP-Pt(n) NFs exhibited excellent oxidase-like activity and the catalytic kinetics followed the typical Michaelis-Menten equation. They showed strong affinity for 3,3',5,5'-tetramethylbenzidine substrates. More importantly, we developed a simple and effective strategy for the sensitive colorimetric detection of organophosphorus pesticides in food using biocompatible AP-Pt(n) NFs. The detection range was 0.5 microg/L - 140 mg/L, which was wider than many previously reported nanozyme detection systems. This colorimetric biosensor had good selectivity and good promise for bioassay analysis.
ESTHER : Zhao_2023_Int.J.Biol.Macromol__126552
PubMedSearch : Zhao_2023_Int.J.Biol.Macromol__126552
PubMedID: 37660849

Related information

Citations formats

Zhao H, Li R, Zhang T, Zhou L, Wang L, Han Z, Liu S, Zhang J (2023)
Platinum nanoflowers stabilized with aloe polysaccharides for detection of organophosphorus pesticides in food
Int J Biol Macromol :126552

Zhao H, Li R, Zhang T, Zhou L, Wang L, Han Z, Liu S, Zhang J (2023)
Int J Biol Macromol :126552