Zhu_2022_Int.J.Mol.Sci_23_

Reference

Title : Discovery of the Key Mutation Site Influencing the Thermostability of Thermomyces lanuginosus Lipase by Rosetta Design Programs - Zhu_2022_Int.J.Mol.Sci_23_
Author(s) : Zhu E , Xiang X , Wan S , Miao H , Han N , Huang Z
Ref : Int J Mol Sci , 23 : , 2022
Abstract :

Lipases are remarkable biocatalysts and are broadly applied in many industry fields because of their versatile catalytic capabilities. Considering the harsh biotechnological treatment of industrial processes, the activities of lipase products are required to be maintained under extreme conditions. In our current study, Gibbs free energy calculations were performed to predict potent thermostable Thermomyces lanuginosus lipase (TLL) variants by Rosetta design programs. The calculating results suggest that engineering on R209 may greatly influence TLL thermostability. Accordingly, ten TLL mutants substituted R209 were generated and verified. We demonstrate that three out of ten mutants (R209H, R209M, and R209I) exhibit increased optimum reaction temperatures, melting temperatures, and thermal tolerances. Based on molecular dynamics simulation analysis, we show that the stable hydrogen bonding interaction between H198 and N247 stabilizes the local configuration of the 250-loop in the three R209 mutants, which may further contribute to higher rigidity and improved enzymatic thermostability. Our study provides novel insights into a single residue, R209, and the 250-loop, which were reported for the first time in modulating the thermostability of TLL. Additionally, the resultant R209 variants generated in this study might be promising candidates for future-industrial applications.

PubMedSearch : Zhu_2022_Int.J.Mol.Sci_23_
PubMedID: 36012226
Gene_locus related to this paper: humla-1lipa

Related information

Gene_locus humla-1lipa

Citations formats

Zhu E, Xiang X, Wan S, Miao H, Han N, Huang Z (2022)
Discovery of the Key Mutation Site Influencing the Thermostability of Thermomyces lanuginosus Lipase by Rosetta Design Programs
Int J Mol Sci 23 :

Zhu E, Xiang X, Wan S, Miao H, Han N, Huang Z (2022)
Int J Mol Sci 23 :