Bjorge SM

References (2)

Title : Metabolic disposition of the cognition activator tacrine in rats, dogs, and humans. Species comparisons - Pool_1997_Drug.Metab.Dispos_25_590
Author(s) : Pool WF , Reily MD , Bjorge SM , Woolf TF
Ref : Drug Metabolism & Disposition: The Biological Fate of Chemicals , 25 :590 , 1997
Abstract : The metabolic fate of tacrine [1,2,3,4-tetrahydro-9-acridinamine monohydrochloride monohydrate (THA)] was examined in rats, dogs, and humans. After administration of single oral doses of [14C]THA to rats, dogs, and humans, drug-derived material was well absorbed, with urinary excretion being the predominant route of radiolabel elimination. Metabolic profiling of plasma and urine from rats, dogs, and humans showed THA to be extensively metabolized with marked species differences in quantitative amounts of metabolites observed. Plasma profiles were similar to respective urinary profiles in all three species. Present in profiles of urine from rats were 1-hydroxy (OH)-THA (major), 2-OH-THA, and 4-OHA-THA, and unchanged THA. Also observed were trace amounts of more polar metabolites, presumably arising from sequential metabolism. Metabolic profiling of dog urine also showed 1-OH-THA to be the major metabolite, with trace amounts of the 2-OHA-THA and 4-OH-THA regioisomers and THA excreted. In dog urine, more of the radioactivity was associated with polar metabolites, including 1,3-dihydroxy-THA and a dihydrodiol metabolite. Human urinary metabolic profiles were more similar to that in dogs than in rats, with no single metabolite constituting > 10% of urinary radioactivity. Present in human urine were phenol glucuronide metabolites, of which 7-OH-THA was identified as an aglycone. Relevance of the marked quantitative differences in THA metabolism between rats, dogs, and humans to species differences in THA hepatotoxic potential remains to be established.
ESTHER : Pool_1997_Drug.Metab.Dispos_25_590
PubMedSearch : Pool_1997_Drug.Metab.Dispos_25_590
PubMedID: 9152598

Title : Bioactivation and irreversible binding of the cognition activator tacrine using human and rat liver microsomal preparations. Species difference - Woolf_1993_Drug.Metab.Dispos_21_874
Author(s) : Woolf TF , Pool WF , Bjorge SM , Chang T , Goel OP , Purchase CF, 2nd , Schroeder MC , Kunze KL , Trager WF
Ref : Drug Metabolism & Disposition: The Biological Fate of Chemicals , 21 :874 , 1993
Abstract : Tacrine's [1,2,3,4-tetrahydro-9-acridinamine monohydrochloride monohydrate, (THA)] metabolic fate was examined using human and rat liver microsomal preparations. Following 1-hr incubations with human microsomes, [14C]THA (0.4 microM) was extensively metabolized to 1-hydroxyTHA with trace amounts of 2-, 4-, and 7-hydroxyTHA also produced. Poor recovery of radioactivity in the postreaction incubates suggested association of THA-derived radioactivity with precipitated microsomal protein. After exhaustive extraction, 0.034, 0.145, 0.126, and 0.012 nmol eq bound/mg protein/60 min of THA-derived radioactivity was bound to human liver preparations H109, H111, H116, and H118, respectively. Preparations H109 and H118 were lower in P4501A2 content and catalytic activity as compared with preparations H111 and H116. Incubations of equimolar [14C]1-hydroxyTHA with human liver microsomes also resulted in binding to protein, although to a lesser extent than observed with THA. [14C]THA (0.4 microM) was incubated for 1 hr with rat liver microsomes (1 microM P-450) prepared from noninduced (N), phenobarbital (PB), isoniazid (I), and 3-methylcholanthrene (3-MC)-pretreated animals. In all incubations, 1-hydroxyTHA was the major biotransformation product detected. After exhaustive extraction, 0.048, 0.054, 0.049, and 0.153 nmol eq/mg protein/60 min of THA-derived radioactivity was bound to microsomal protein from N, PB, I, and 3-MC pretreated rats. Increased binding with 3-MC induced rat liver preparations suggests the involvement of the P-450 1A subfamily in THA bioactivation. Glutathione (5 mM) coincubation inhibited the irreversible binding of THA-derived radioactivity in both human and 3-MC-induced rat liver preparations, whereas human epoxide hydrase (100 micrograms/incubate) had a relative minor effect. A mechanism is proposed involving a putative quinone methide(s) intermediate in the bioactivation and irreversible binding of THA. A species difference in THA-derived irreversible binding exists between human and noninduced rat liver microsomes, suggesting that the rat is a poor model for studying the underlying mechanism(s) of THA-induced elevations in liver marker enzymes found in clinical investigations.
ESTHER : Woolf_1993_Drug.Metab.Dispos_21_874
PubMedSearch : Woolf_1993_Drug.Metab.Dispos_21_874
PubMedID: 7902251