Klein T

References (4)

Title : The dipeptidyl peptidase 4 inhibitor linagliptin ameliorates renal injury and accelerated resolution in a rat model of crescentic nephritis - Mayer_2021_Br.J.Pharmacol_178_878
Author(s) : Mayer AL , Scheitacker I , Ebert N , Klein T , Amann K , Daniel C
Ref : British Journal of Pharmacology , 178 :878 , 2021
Abstract : BACKGROUND AND PURPOSE: Dipeptidyl peptidase 4 (DPP-4) inhibitors are a class of oral glucose-lowering drugs used in the treatment of type 2 diabetes. In a pilot study using human kidney biopsies, we observed high DPP-4 expression in early crescent formation. This glomerular lesion occurs in different kidney diseases and is a hallmark in the pathogenesis of renal dysfunction. Therefore, we investigated the potential involvement of DPP-4 in the pathogenesis of nephritis induced by anti-glomerular basement membrane (GBM) antibody in rats. EXPERIMENTAL APPROACH: Linagliptin and vehicle were used to treat anti-GBM nephritis in a 2- and 8-week regimen, that is either preventive or therapeutic (treatment started 7 days or 4 weeks after disease induction). Kidney function, morphologic changes, inflammation and fibrosis were monitored. KEY RESULTS: In the long-term experiment, linagliptin preventive treatment in anti-GBM nephritic rats significantly reduced the number of crescents, glomerulosclerosis, tubular injury and renal fibrosis, compared with those in untreated nephritic rats. Both linagliptin regimes significantly lowered the number of Pax8+ cells on the glomerular tuft in anti-GBM nephritis, indicating accelerated resolution of the cellular crescents. The linagliptin treatment did not change the podocyte stress in both therapeutic groups. Therapeutic intervention with linagliptin resulted in weaker amelioration of renal disease on Week 8 than did preventive intervention. CONCLUSION AND IMPLICATIONS: DPP-4 inhibition with linagliptin ameliorates renal injury in a rat model of anti-GBM, indicating that linagliptin not only is a secure therapy in diabetes but also can improve resolution of glomerular injury and healing in non-diabetic renal disease.
ESTHER : Mayer_2021_Br.J.Pharmacol_178_878
PubMedSearch : Mayer_2021_Br.J.Pharmacol_178_878
PubMedID: 33171531

Title : A Single Second Shell Amino Acid Determines Affinity and Kinetics of Linagliptin Binding to Type 4 Dipeptidyl Peptidase and Fibroblast Activation Protein - Schnapp_2021_ChemMedChem_16_630
Author(s) : Schnapp G , Hoevels Y , Bakker RA , Schreiner P , Klein T , Nar H
Ref : ChemMedChem , 16 :630 , 2021
Abstract : Drugs targeting type 4 dipeptidyl peptidase (DPP-4) are beneficial for glycemic control, whereas fibroblast activation protein alpha (FAP-alpha) is a potential target for cancer therapies. Unlike other gliptins, linagliptin displays FAP inhibition. We compared biophysical and structural characteristics of linagliptin binding to DPP-4 and FAP to better understand what differentiates linagliptin from other gliptins. Linagliptin exhibited high binding affinity (K(D) ) and a slow off-rate (k(off) ) when dissociating from DPP-4 (K(D) 6.6pM; k(off) 5.1x10(-5) s(-1) ), and weaker inhibitory potency to FAP (K(D) 301nM; k(off) >1s(-1) ). Co-structures of linagliptin with DPP-4 or FAP were similar except for one second shell amino acid difference: Asp663 (DPP-4) and Ala657 (FAP). pH dependence of enzymatic activities and binding of linagliptin for DPP-4 and FAP are dependent on this single amino acid difference. While linagliptin may not display any anticancer activity at therapeutic doses, our findings may guide future studies for the development of optimized inhibitors.
ESTHER : Schnapp_2021_ChemMedChem_16_630
PubMedSearch : Schnapp_2021_ChemMedChem_16_630
PubMedID: 33030297
Gene_locus related to this paper: human-FAP

Title : Action of Dipeptidyl Peptidase-4 Inhibitors on SARS-CoV-2 Main Protease - Nar_2021_ChemMedChem_16_1425
Author(s) : Nar H , Schnapp G , Hucke O , Hardman TC , Klein T
Ref : ChemMedChem , 16 :1425 , 2021
Abstract : In a recent publication, Eleftheriou etal. proposed that inhibitors of dipeptidyl peptidase-4 (DPP-4) are functional inhibitors of the main protease (M(pro) ) of SARS-CoV-2. Their predictions prompted the authors to suggest linagliptin, a DPP-4 inhibitor and approved anti-diabetes drug, as a repurposed drug candidate against the ongoing COVID-19 pandemic. We used an enzymatic assay measuring the inhibition of M(pro) catalytic activity in the presence of four different commercially available gliptins (linagliptin, sitagliptin, alogliptin and saxagliptin) and several structural analogues of linagliptin to study the binding of DPP-4 inhibitors to M(pro) and their functional activity. We show here that DPP-4 inhibitors like linagliptin, other gliptins and structural analogues are inactive against M(pro) .
ESTHER : Nar_2021_ChemMedChem_16_1425
PubMedSearch : Nar_2021_ChemMedChem_16_1425
PubMedID: 33348462

Title : Comparative Analysis of Binding Kinetics and Thermodynamics of Dipeptidyl Peptidase-4 Inhibitors and Their Relationship to Structure - Schnapp_2016_J.Med.Chem_59_7466
Author(s) : Schnapp G , Klein T , Hoevels Y , Bakker RA , Nar H
Ref : Journal of Medicinal Chemistry , 59 :7466 , 2016
Abstract : The binding kinetics and thermodynamics of dipeptidyl peptidase (DPP)-4 inhibitors (gliptins) were investigated using surface plasmon resonance and isothermal titration calorimetry. Binding of gliptins to DPP-4 is a rapid electrostatically driven process. Off-rates were generally slow partly because of reversible covalent bond formation by some gliptins, and partly because of strong and extensive interactions. Binding of all gliptins is enthalpy-dominated due to strong ionic interactions and strong solvent-shielded hydrogen bonds. Using a congeneric series of molecules which represented the intermediates in the lead optimization program of linagliptin, the onset of slow binding kinetics and development of the thermodynamic repertoire were analyzed in the context of incremental changes of the chemical structures. All compounds rapidly associated, and therefore the optimization of affinity and residence time is highly correlated. The major contributor to the increasing free energy of binding was a strong increase of binding enthalpy, whereas entropic contributions remained low and constant despite significant addition of lipophilicity.
ESTHER : Schnapp_2016_J.Med.Chem_59_7466
PubMedSearch : Schnapp_2016_J.Med.Chem_59_7466
PubMedID: 27438064
Gene_locus related to this paper: pig-dpp4