Lammers M

References (6)

Title : Marine Bacteroidetes enzymatically digest xylans from terrestrial plants - Dutschei_2023_Environ.Microbiol__
Author(s) : Dutschei T , Beidler I , Bartosik D , Seesselberg JM , Teune M , Baumgen M , Ferreira SQ , Heldmann J , Nagel F , Krull J , Berndt L , Methling K , Hein M , Becher D , Langer P , Delcea M , Lalk M , Lammers M , Hohne M , Hehemann JH , Schweder T , Bornscheuer UT
Ref : Environ Microbiol , : , 2023
Abstract : Marine Bacteroidetes that degrade polysaccharides contribute to carbon cycling in the ocean. Organic matter, including glycans from terrestrial plants, might enter the oceans through rivers. Whether marine bacteria degrade structurally related glycans from diverse sources including terrestrial plants and marine algae was previously unknown. We show that the marine bacterium Flavimarina sp. Hel_I_48 encodes two polysaccharide utilization loci (PULs) which degrade xylans from terrestrial plants and marine algae. Biochemical experiments revealed activity and specificity of the encoded xylanases and associated enzymes of these PULs. Proteomics indicated that these genomic regions respond to glucuronoxylans and arabinoxylans. Substrate specificities of key enzymes suggest dedicated metabolic pathways for xylan utilization. Some of the xylanases were active on different xylans with the conserved beta-1,4-linked xylose main chain. Enzyme activity was consistent with growth curves showing Flavimarina sp. Hel_I_48 uses structurally different xylans. The observed abundance of related xylan-degrading enzyme repertoires in genomes of other marine Bacteroidetes indicates similar activities are common in the ocean. The here presented data show that certain marine bacteria are genetically and biochemically variable enough to access parts of structurally diverse xylans from terrestrial plants as well as from marine algal sources.
ESTHER : Dutschei_2023_Environ.Microbiol__
PubMedSearch : Dutschei_2023_Environ.Microbiol__
PubMedID: 37121608

Title : Structural Insights into (Tere)phthalate-Ester Hydrolysis by a Carboxylesterase and Its Role in Promoting PET Depolymerization - von Haugwitz_2022_ACS.Catal_12_15259
Author(s) : von Haugwitz G , Han X , Pfaff L , Li Q , Wei H , Gao J , Methling K , Ao Y , Brack Y , Jan Mican J , Feiler CG , Weiss MS , Bednar D , Palm GJ , Lalk M , Lammers M , Damborsky J , Weber G , Liu W , Bornscheuer UT , Wei R
Ref : ACS Catal , 12 :15259 , 2022
Abstract : TfCa, a promiscuous carboxylesterase from Thermobifida fusca, was found to hydrolyze polyethylene terephthalate (PET) degradation intermediates such as bis(2-hydroxyethyl) terephthalate (BHET) and mono-(2-hydroxyethyl)-terephthalate (MHET). In this study, we elucidated the structures of TfCa in its apo form, as well as in complex with a PET monomer analogue and with BHET. The structurefunction relationship of TfCa was investigated by comparing its hydrolytic activity on various ortho- and para-phthalate esters of different lengths. Structure-guided rational engineering of amino acid residues in the substrate-binding pocket resulted in the TfCa variant I69W/V376A (WA), which showed 2.6-fold and 3.3-fold higher hydrolytic activity on MHET and BHET, respectively, than the wild-type enzyme. TfCa or its WA variant was mixed with a mesophilic PET depolymerizing enzyme variant [Ideonella sakaiensis PETase (IsPETase) PM] to degrade PET substrates of various crystallinity. The dual enzyme system with the wild-type TfCa or its WA variant produced up to 11-fold and 14-fold more terephthalate (TPA) than the single IsPETase PM, respectively. In comparison to the recently published chimeric fusion protein of IsPETase and MHETase, our system requires 10% IsPETase and one-fourth of the reaction time to yield the same amount of TPA under similar PET degradation conditions. Our simple dual enzyme system reveals further advantages in terms of cost-effectiveness and catalytic efficiency since it does not require time-consuming and expensive cross-linking and immobilization approaches.
ESTHER : von Haugwitz_2022_ACS.Catal_12_15259
PubMedSearch : von Haugwitz_2022_ACS.Catal_12_15259
PubMedID: 36570084
Gene_locus related to this paper: thefu-1831

Title : Multiple Substrate Binding Mode-Guided Engineering of a Thermophilic PET Hydrolase - Pfaff_2022_ACS.Catalysis_12_9790
Author(s) : Pfaff L , Gao J , Li Z , Jackering A , Weber G , Mican J , Chen Y , Dong W , Han X , Feiler CG , Ao YF , Badenhorst CPS , Bednar D , Palm GJ , Lammers M , Damborsky J , Strodel B , Liu W , Bornscheuer UT , Wei R
Ref : ACS Catal , 12 :9790 , 2022
Abstract : Thermophilic polyester hydrolases (PES-H) have recently enabled biocatalytic recycling of the mass-produced synthetic polyester polyethylene terephthalate (PET), which has found widespread use in the packaging and textile industries. The growing demand for efficient PET hydrolases prompted us to solve high-resolution crystal structures of two metagenome-derived enzymes (PES-H1 and PES-H2) and notably also in complex with various PET substrate analogues. Structural analyses and computational modeling using molecular dynamics simulations provided an understanding of how product inhibition and multiple substrate binding modes influence key mechanistic steps of enzymatic PET hydrolysis. Key residues involved in substratebinding and those identified previously as mutational hotspots in homologous enzymes were subjected to mutagenesis. At 72 C, the L92F/Q94Y variant of PES-H1 exhibited 2.3-fold and 3.4-fold improved hydrolytic activity against amorphous PET films and pretreated real-world PET waste, respectively. The R204C/S250C variant of PES-H1 had a 6.4 C higher melting temperature than the wild-type enzyme but retained similar hydrolytic activity. Under optimal reaction conditions, the L92F/Q94Y variant of PES-H1 hydrolyzed low-crystallinity PET materials 2.2-fold more efficiently than LCC ICCG, which was previously the most active PET hydrolase reported in the literature. This property makes the L92F/ Q94Y variant of PES-H1 a good candidate for future applications in industrial plastic r"cycling processes.
ESTHER : Pfaff_2022_ACS.Catalysis_12_9790
PubMedSearch : Pfaff_2022_ACS.Catalysis_12_9790
PubMedID: 35966606
Gene_locus related to this paper: 9firm-PHL7

Title : Promiscuous Dehalogenase Activity of the Epoxide Hydrolase CorEH from Corynebacterium sp. C12 - Schuiten_2021_ACS.Catal_11_6113
Author(s) : Schuiten ED , Badenhorst CPS , Palm GJ , Berndt L , Lammers M , Mican J , Bednar D , Damborsky J , Bornscheuer UT
Ref : ACS Catal , 11 :6113 , 2021
Abstract : Haloalkane dehalogenases and epoxide hydrolases are phylogenetically related and structurally homologous enzymes that use nucleophilic aspartate residues for an SN2 attack on their substrates. Despite their mechanistic similarities, no enzymes are known that exhibit both epoxide hydrolase and dehalogenase activity. We screened a subset of epoxide hydrolases, closely related to dehalogenases, for dehalogenase activity and found that the epoxide hydrolase CorEH from Corynebacterium sp. C12 exhibits promiscuous dehalogenase activity. Compared to the hydrolysis of epoxides like cyclohexene oxide (1.41 micromol min-1 mg-1), the dehalogenation of haloalkanes like 1-bromobutane (0.25 nmol min-1 mg-1) is about 5000-fold lower. In addition to the activity with 1-bromobutane, dehalogenase activity was detected with other substrates like 1-bromohexane, 1,2-dibromoethane, 1-iodobutane, and 1-iodohexane. This study shows that dual epoxide hydrolase and dehalogenase activity can be present in one naturally occurring protein scaffold.
ESTHER : Schuiten_2021_ACS.Catal_11_6113
PubMedSearch : Schuiten_2021_ACS.Catal_11_6113
PubMedID:
Gene_locus related to this paper: corsp-cEH

Title : Discovery and Design of Family VIII Carboxylesterases as Highly Efficient Acyltransferases - Muller_2021_Angew.Chem.Int.Ed.Engl_60_2013
Author(s) : Muller H , Godehard SP , Palm GJ , Berndt L , Badenhorst CPS , Becker AK , Lammers M , Bornscheuer UT
Ref : Angew Chem Int Ed Engl , 60 :2013 , 2021
Abstract : Promiscuous acyltransferase activity is the ability of certain hydrolases to preferentially catalyze acyl transfer over hydrolysis, even in bulk water. However, poor enantioselectivity, low transfer efficiency, significant product hydrolysis, and limited substrate scope represent considerable drawbacks for their application. By activity-based screening of several hydrolases, we identified the family VIII carboxylesterase, EstCE1, as an unprecedentedly efficient acyltransferase. EstCE1 catalyzes the irreversible amidation and carbamoylation of amines in water, which enabled the synthesis of the drug moclobemide from methyl 4-chlorobenzoate and 4-(2-aminoethyl)morpholine (ca. 20% conversion). We solved the crystal structure of EstCE1 and detailed structure-function analysis revealed a three-amino acid motif important for promiscuous acyltransferase activity. Introducing this motif into an esterase without acetyltransferase activity transformed a "hydrolase" into an "acyltransferase".
ESTHER : Muller_2021_Angew.Chem.Int.Ed.Engl_60_2013
PubMedSearch : Muller_2021_Angew.Chem.Int.Ed.Engl_60_2013
PubMedID: 33140887

Title : Sequence-Based Prediction of Promiscuous Acyltransferase Activity in Hydrolases - Muller_2020_Angew.Chem.Int.Ed.Engl_59_11607
Author(s) : Muller H , Becker AK , Palm GJ , Berndt L , Badenhorst CPS , Godehard SP , Reisky L , Lammers M , Bornscheuer U
Ref : Angew Chem Int Ed Engl , 59 :11607 , 2020
Abstract : Certain hydrolases preferentially catalyze acyl transfer over hydrolysis in an aqueous environment. However, molecular and structural reasons for this phenomenon are still unclear. Here we provide evidence that acyltransferase activity in esterases highly correlates with the hydrophobicity of the substrate-binding pocket. A hydrophobicity scoring system developed in this work allows accurate prediction of promiscuous acyltransferase activity solely from the amino acid sequence of the cap domain. This concept was experimentally verified by systematic investigation of several homologous esterases, leading to the discovery of five novel promiscuous acyltransferases. We also developed a simple, yet versatile, colorimetric assay for rapid characterization of novel acyltransferases. This study demonstrates that promiscuous acyltransferase activity is not as rare as previously thought and provides access to a vast number of novel acyltransferases with diverse substrate specificities and potential applications.
ESTHER : Muller_2020_Angew.Chem.Int.Ed.Engl_59_11607
PubMedSearch : Muller_2020_Angew.Chem.Int.Ed.Engl_59_11607
PubMedID: 32243661
Gene_locus related to this paper: 9bact-Est8.6Y9K