Ott TR

General

Full name : Ott Thomas R

First name : Thomas R

Mail : Acadia Pharmaceuticals, 3911 Sorrento Valley Blvd, San Diego, CA 92121

Zip Code :

City :

Country : USA

Email :

Phone :

Fax :

Website :

Directory :

References (2)

Title : AC-260584, an orally bioavailable M(1) muscarinic receptor allosteric agonist, improves cognitive performance in an animal model - Bradley_2010_Neuropharmacol_58_365
Author(s) : Bradley SR , Lameh J , Ohrmund L , Son T , Bajpai A , Nguyen D , Friberg M , Burstein ES , Spalding TA , Ott TR , Schiffer HH , Tabatabaei A , McFarland K , Davis RE , Bonhaus DW
Ref : Neuropharmacology , 58 :365 , 2010
Abstract : The recent discovery of allosteric potentiators and agonists of the muscarinic M(1) receptor represents a significant advance in the muscarinic receptor pharmacology. In the current study we describe the receptor pharmacology and pro-cognitive action of the allosteric agonist AC-260584. Using in vitro cell-based assays with cell proliferation, phosphatidylinositol hydrolysis or calcium mobilization as endpoints, AC-260584 was found to be a potent (pEC(50) 7.6-7.7) and efficacious (90-98% of carbachol) muscarinic M(1) receptor agonist. Furthermore, as compared to orthosteric binding agonists, AC-260584 showed functional selectivity for the M(1) receptor over the M(2), M(3), M(4) and M(5) muscarinic receptor subtypes. Using GTPgammaS binding assays, its selectivity was found to be similar in native tissues expressing mAChRs to its profile in recombinant systems. In rodents, AC-260584 activated extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation in the hippocampus, prefrontal cortex and perirhinal cortex. The ERK1/2 activation was dependent upon muscarinic M(1) receptor activation since it was not observed in M(1) knockout mice. AC-260584 also improved the cognitive performance of mice in the novel object recognition assay and its action is blocked by the muscarinic receptor antagonist pirenzepine. Taken together these results indicate for the first time that a M(1) receptor agonist selective over the other mAChR subtypes can have a symptomatically pro-cognitive action. In addition, AC-260584 was found to be orally bioavailable in rodents. Therefore, AC-260584 may serve as a lead compound in the development of M(1) selective drugs for the treatment of cognitive impairment associated with schizophrenia and Alzheimer's disease.
ESTHER : Bradley_2010_Neuropharmacol_58_365
PubMedSearch : Bradley_2010_Neuropharmacol_58_365
PubMedID: 19835892

Title : Structural requirements of transmembrane domain 3 for activation by the M1 muscarinic receptor agonists AC-42, AC-260584, clozapine, and N-desmethylclozapine: evidence for three distinct modes of receptor activation - Spalding_2006_Mol.Pharmacol_70_1974
Author(s) : Spalding TA , Ma JN , Ott TR , Friberg M , Bajpai A , Bradley SR , Davis RE , Brann MR , Burstein ES
Ref : Molecular Pharmacology , 70 :1974 , 2006
Abstract : Transmembrane domain 3 (TM3) plays a crucial role mediating muscarinic acetylcholine receptor activation by acetylcholine, carbachol, and other muscarinic agonists. We compared the effects of point mutations throughout TM3 on the interactions of carbachol, 4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl] piperidine hydrogen chloride (AC-42), a potent structural analog of AC-42 called 4-[3-(4-butylpiperidin-1-yl)-propyl]-7-fluoro-4H-benzo[1,4]oxazin-3-one (AC-260584), N-desmethylclozapine, and clozapine with the M(1) muscarinic receptor. The binding and activation profiles of these ligands fell into three distinct patterns; one exemplified by orthosteric compounds like carbachol, another by structural analogs of AC-42, and a third by structural analogs of N-desmethylclozapine. All mutations tested severely reduced carbachol binding and activation of M(1). In contrast, the agonist actions of AC-42 and AC-260584 were greatly potentiated by the W101A mutation, slightly reduced by Y106A, and slightly increased by S109A. Clozapine and N-desmethylclozapine displayed substantially increased maximum responses at the Y106A and W101A mutants, slightly lower activity at S109A, but no substantial changes in potency. At L102A and N110A, agonist responses to AC-42, AC-260584, clozapine, and N-desmethylclozapine were all substantially reduced, but usually less than carbachol. D105A showed no functional responses to all ligands. Displacement and dissociation rate experiments demonstrated clear allosteric properties of AC-42 and AC-260584 but not for N-desmethylclozapine and clozapine, indicating that they may contact different residues than carbachol to activate M(1) but occupy substantially overlapping spaces, in contrast to AC-42 and AC-260584, which occupy separable spaces. These results show that M(1) receptors can be activated in at least three distinct ways and that there is no requirement for potent muscarinic agonists to mimic acetylcholine interactions with TM3.
ESTHER : Spalding_2006_Mol.Pharmacol_70_1974
PubMedSearch : Spalding_2006_Mol.Pharmacol_70_1974
PubMedID: 16959945