Title: Changes of global gene expression and secondary metabolite accumulation during light-dependent Aspergillus nidulans development Bayram O, Feussner K, Dumkow M, Herrfurth C, Feussner I, Braus GH Ref: Fungal Genet Biol, 87:30, 2016 : PubMed
Fungal development and secondary metabolite production are coordinated by regulatory complexes as the trimeric velvet complex. Light accelerates asexual but decreases sexual development of the filamentous fungus Aspergillus nidulans. Changes in gene expression and secondary metabolite accumulation in response to environmental stimuli have been the focus of many studies, but a comprehensive comparison during entire development is lacking. We compared snapshots of transcript and metabolite profiles during fungal development in dark or light. Overall 2.014 genes corresponding to 19% of the genome were differentially expressed when submerged vegetative hyphae were compared to surface development. Differentiation was preferentially asexual in light or preferentially sexual connected to delayed asexual development in dark. Light induces significantly gene expression within the first 24-48h after the transfer to surfaces. Many light induced genes are also expressed in dark after a delay of up to two days, which might be required for preparation of enhanced sexual development. Darkness results in a massive transcriptional reprogramming causing a peak of lipid-derived fungal pheromone synthesis (psi factors) during early sexual development and the expression of genes for cell-wall degradation presumably to mobilize the energy for sexual differentiation. Accumulation of secondary metabolites like antitumoral terrequinone A or like emericellamide start under light conditions, whereas the mycotoxin sterigmatocystin or asperthecin and emodin appear under dark conditions during sexual development. Amino acid synthesis and pool rapidly drop after 72-96h in dark. Subsequent initiation of apoptotic cell-death pathways in darkness happens significantly later than in light. This illustrates that fungal adaptation in differentiation and secondary metabolite production to light conditions requires the reprogramming of one fifth of the potential of its genome.
The deposition of the (1,3)-beta-glucan cell wall polymer callose at sites of attempted penetration is a common plant defense response to intruding pathogens and part of the plant's innate immunity. Infection of the Fusarium graminearum disruption mutant Deltafgl1, which lacks the effector lipase FGL1, is restricted to inoculated wheat (Triticum aestivum) spikelets, whereas the wild-type strain colonized the whole wheat spike. Our studies here were aimed at analyzing the role of FGL1 in establishing full F. graminearum virulence. Confocal laser-scanning microscopy revealed that the Deltafgl1 mutant strongly induced the deposition of spot-like callose patches in vascular bundles of directly inoculated spikelets, while these callose deposits were not observed in infections by the wild type. Elevated concentrations of the polyunsaturated free fatty acids (FFAs) linoleic and alpha-linolenic acid, which we detected in F. graminearum wild type-infected wheat spike tissue compared with Deltafgl1-infected tissue, provided clear evidence for a suggested function of FGL1 in suppressing callose biosynthesis. These FFAs not only inhibited plant callose biosynthesis in vitro and in planta but also partially restored virulence to the Deltafgl1 mutant when applied during infection of wheat spikelets. Additional FFA analysis confirmed that the purified effector lipase FGL1 was sufficient to release linoleic and alpha-linolenic acids from wheat spike tissue. We concluded that these two FFAs have a major function in the suppression of the innate immunity-related callose biosynthesis and, hence, the progress of F. graminearum wheat infection.
Across all kingdoms of life, cells store energy in a specialized organelle, the lipid droplet. In general, it consists of a hydrophobic core of triglycerides and steryl esters surrounded by only one leaflet derived from the endoplasmic reticulum membrane to which a specific set of proteins is bound. We have chosen the unicellular organism Dictyostelium discoideum to establish kinetics of lipid droplet formation and degradation and to further identify the lipid constituents and proteins of lipid droplets. Here, we show that the lipid composition is similar to what is found in mammalian lipid droplets. In addition, phospholipids preferentially consist of mainly saturated fatty acids, whereas neutral lipids are enriched in unsaturated fatty acids. Among the novel protein components are LdpA, a protein specific to Dictyostelium, and Net4, which has strong homologies to mammalian DUF829/Tmem53/NET4 that was previously only known as a constituent of the mammalian nuclear envelope. The proteins analyzed so far appear to move from the endoplasmic reticulum to the lipid droplets, supporting the concept that lipid droplets are formed on this membrane.