Du X

References (32)

Title : Transcriptomic Association Analysis of the Metabolic Mechanism of Sulfamethoxazole in Channel Catfish (Ictalurus punctatus) - Du_2024_Animals.(Basel)_14_
Author(s) : Du X , Sun R , Zhang L , Liu Y , Ai X
Ref : Animals (Basel) , 14 : , 2024
Abstract : Sulfamethoxazole is a widely used antimicrobial drug used to treat bacterial diseases in aquaculture. To understand the gene expression in channel catfish liver after treatment with sulfamethoxazole, in this study, the treatment group received sulfamethoxazole (100 mg/kg bw), which was administered orally once, and samples were taken at 5 h, 12 h, and 6 d after the administration of sulfamethoxazole, while the control group was orally administered sterile water. To further identify potentially significant genes, a transcriptome analysis using RNA-seq was carried out. More than 50 million high-quality reads were found. After filtering and quality analysis, these reads were identified as 54,169,682, 51,313,865, 51,608,845, and 49,333,491. After counting 23,707 of these transcripts for gene expression, it was discovered that 14,732 of them had genes with differential expression. Moreover, we found that the annotation with the most GO variation was "cellular process" (1616 genes), "metabolic process" (1268 genes), "binding" (1889 genes), and "catalytic activity" (1129 genes). KEGG pathways showed that the "metabolic pathway" was the pathway that was significantly enriched in both experimental groups when comparing the experimental groups: 5 h and 12 h (128 genes); 5 h and 6 d (332 genes); and 12 h and 6 d (348 genes). Also, UDP- glucuronosyltransferase (ugt), which is associated with glucuronidation, and UDP-glucuronosyltransferase 2C1-like (ugt2a1) showed significant upregulation. Carboxylesterase 5A-like (ces3), which promotes fatty acyl and cholesteryl ester metabolism, and the glutathione transferase family were upregulated in the expression of sulfamethoxazole metabolism in the liver, which significantly affected the metabolic effects of the drug. Meanwhile, dypd, uck2b, and rrm2, which are related to nucleotide synthesis and metabolism, were upregulated. Our study extends the knowledge of gene expression in drug metabolism in channel catfish and further provides insight into the molecular mechanism of sulfamethoxazole metabolism.
ESTHER : Du_2024_Animals.(Basel)_14_
PubMedSearch : Du_2024_Animals.(Basel)_14_
PubMedID: 38612297

Title : Biosynthesis of diisooctyl 2,5-furandicarboxylate by Candida antarctica lipase B (CALB) immobilized on a macroporous epoxy resin - Mang_2023_Biotechnol.Appl.Biochem__
Author(s) : Mang R , Zhou Y , Du X , Zhou H , Zhu M
Ref : Biotechnol Appl Biochem , : , 2023
Abstract : Diisooctyl 2,5-furandicarboxylate (DEF), an ester derivative of 2,5-furandicarboxylic acid (FDCA, a bio-based platform chemical), resembles the physical and chemical properties of phthalates. Due to its excellent biodegradability, DEF is considered a safer alternative to the hazardous phthalate plasticizers. Although FDCA esters are currently mainly produced by chemical synthesis, the enzymatic synthesis of DEF is a green, promising alternative. The current study investigated the biosynthesis of DEF by Candida antarctica lipase B (CALB) immobilized on macroporous resins. Out of five macroporous resins (NKA-9, LX-1000EP, LX-1000HA, XAD-7HP, and XAD-8) evaluated, the LX-1000EP epoxy resin was identified as the best carrier for CALB, and the XAD-7HP weakly polar resin was identified as the second best. The optimal immobilization conditions were as follows: CALB (500 microL) and LX-1000EP (0.1 g) were incubated in phosphate butter (20 mM, pH 6.0) for 10 h at 35 degreesC. The resulting immobilized CALB (EP-CALB) showed an activity of 639 U/g in the hydrolysis of p-nitrophenyl acetate, with an immobilization efficiency of 87.8% and an activity recovery rate of 56.4%. Using 0.02 g EP-CALB as the catalyst in 10 mL toluene, and the molar ratio of 2,5-dimethyl furanediformate (1 mmol/mL) and isooctyl alcohol (4 mmol/mL) that was 1:4, a DEF conversion rate of 91.3% was achieved after a 24-h incubation at 50 degreesC. EP-CALB had similar thermal stability and organic solvent tolerance compared to Novozym 435, and both were superior to CALB immobilized on the XAD-7HP resin. EP-CALB also exhibited excellent operational stability, with a conversion rate of 52.6% after 10 repeated uses. EP-CALB could be a promising alternative to Novozym 435 in the biomanufacturing of green and safe plasticizers such as DEF.
ESTHER : Mang_2023_Biotechnol.Appl.Biochem__
PubMedSearch : Mang_2023_Biotechnol.Appl.Biochem__
PubMedID: 37264706

Title : In vivo visualization of enantioselective targeting of amyloid and improvement of cognitive function by clickable chiral metallohelices - Du_2023_Chem.Sci_14_506
Author(s) : Du Z , Liu C , Liu Z , Song H , Scott P , Du X , Ren J , Qu X
Ref : Chem Sci , 14 :506 , 2023
Abstract : The pathogenesis of Alzheimer's disease (AD) is closely related to several contributing factors, especially amyloid-beta (Abeta) aggregation. Bioorthogonal reactions provide a general, facile, and robust route for the localization and derivatization of Abeta-targeted agents. Herein, a pair of chiral alkyne-containing metallohelices (A and deltaA) were demonstrated to enantioselectively target and modulate Abeta aggregation, which has been monitored in triple-transgenic AD model mice and proved to improve cognitive function. Compared with its enantiomer deltaA, A performed better in blocking Abeta fibrillation, relieving Abeta-triggered toxicity, and recovering memory deficits in vivo. Moreover, clickable A could act as a functional module for subsequent visualization and versatile modification of amyloid via bioorthogonal reaction. As a proof-of-concept, thioflavin T, tacrine, and magnetic nanoparticles were conjugated with A to realize Abeta photo-oxygenation, acetylcholinesterase inhibition, and Abeta clearance, respectively. This proof-of-principle work provided new insights into the biolabeling and bioconjugation of multifunctional metallosupramolecules through click reactions for AD therapy.
ESTHER : Du_2023_Chem.Sci_14_506
PubMedSearch : Du_2023_Chem.Sci_14_506
PubMedID: 36741518

Title : Development of integrated smartphone\/resistive biosensor for on-site rapid environmental monitoring of organophosphate pesticides in food and water - Maanaki_2023_Biosens.Bioelectron.X_15_
Author(s) : Maanaki H , Xu T , Chen G , Du X , Wang J
Ref : Biosensors & Bioelectronics X , 15 : , 2023
Abstract : Organophosphate (OP) pesticides remain a worldwide health concern due to their acute or chronic poisoning and widespread use in agriculture around the world. There is a need for robust and field-deployable tools for onsite detection of OP pesticides in food and water. Herein, we present an integrated smartphone/resistive biosensor for simple, rapid, reagentless, and sensitive monitoring of OP pesticides in food and environmental water. The biosensor leverages the hydrolytic activity of acetylcholinesterase (AChE) to its substrate, acetylcholine (ACh), and unique transport properties of polyaniline nanofibers (PAnNFs) of chitosan/AChE/PAnNF/carbon nanotube (CNT) nanocomposite film on a gold interdigitated electrode. The principle of the sensor relies on OP inhibiting AChE, thus, reducing the rate of ACh hydrolysis and consequently decreasing the rate of protons doping the PAnNFs. Such resulted decrease in conductance of PAnNF can be used to quantify OP pesticides in a sample. A mobile app for the biosensor was developed for analyzing measurement data and displaying and sharing testing results. Under optimal conditions, the biosensor demonstrated a wide linear range (1 ppt-100 ppb) with a low detection limit (0.304 ppt) and high reproducibility (RSD <5%) for Paraoxon-Methyl (PM), a model analyte. Furthermore, the biosensor was successfully applied for analyzing PM spiked food/water samples with an average recovery rate of 98.3% and provided comparable results with liquid chromatography-mass spectrometry. As such, the nanosensing platform provides a promising tool for onsite rapid and sensitive detection of OP pesticides in food and environmental water.
ESTHER : Maanaki_2023_Biosens.Bioelectron.X_15_
PubMedSearch : Maanaki_2023_Biosens.Bioelectron.X_15_
PubMedID: 38124900

Title : Lentiviral Transduction-based CRISPR\/Cas9 Editing of Schistosoma mansoni Acetylcholinesterase - Du_2023_Curr.Genomics_24_155
Author(s) : Du X , McManus DP , French JD , Sivakumaran H , Johnston RL , Kondrashova O , Fogarty CE , Jones MK , You H
Ref : Curr Genomics , 24 :155 , 2023
Abstract : BACKGROUND: Recent studies on CRISPR/Cas9-mediated gene editing in Schistosoma mansoni have shed new light on the study and control of this parasitic helminth. However, the gene editing efficiency in this parasite is modest. METHODS: To improve the efficiency of CRISPR/Cas9 genome editing in schistosomes, we used lentivirus, which has been effectively used for gene editing in mammalian cells, to deliver plasmid DNA encoding Cas9 nuclease, a sgRNA targeting acetylcholinesterase (SmAChE) and a mCherry fluorescence marker into schistosomes. RESULTS: MCherry fluorescence was observed in transduced eggs, schistosomula, and adult worms, indicating that the CRISPR components had been delivered into these parasite stages by lentivirus. In addition, clearly changed phenotypes were observed in SmAChE-edited parasites, including decreased SmAChE activity, reduced hatching ability of edited eggs, and altered behavior of miracidia hatched from edited eggs. Next-generation sequencing analysis demonstrated that the lentiviral transduction-based CRISPR/Cas9 gene modifications in SmAChE-edited schistosomes were homology-directed repair predominant but with much lower efficiency than that obtained using electroporation (data previously published by our laboratory) for the delivery of CRISPR components. CONCLUSION: Taken together, electroporation is more efficient than lentiviral transduction in the delivery of CRISPR/Cas9 into schistosomes for programmed genome editing. The exploration of tactics for enhancing CRISPR/Cas9 gene editing provides the basis for the future improvement of programmed genome editing in S. mansoni.
ESTHER : Du_2023_Curr.Genomics_24_155
PubMedSearch : Du_2023_Curr.Genomics_24_155
PubMedID: 38178986

Title : Biodegradation mechanism of chlorpyrifos by Bacillus sp. H27: Degradation enzymes, products, pathways and whole genome sequencing analysis - Liu_2023_Environ.Res__117315
Author(s) : Liu C , Zhao C , Wang L , Du X , Zhu L , Wang J , Mo Kim Y
Ref : Environ Research , :117315 , 2023
Abstract : Chlorpyrifos (CP) is a pesticide widely used in agricultural production. However, excessive use of CP is risky for human health and the ecological environment. Microbial remediation has become a research hotspot of environmental pollution control. In this study, the effective CP-degrading strain H27 (Bacillus cereus) was screened from farmland soil, and the degradation ratio was more than 80%. Then, the degradation mechanism was discussed in terms of enzymes, pathways, products and genes, and the mechanism was improved in terms of cell motility, secretory transport system and biofilm formation. The key CP-degrading enzymes were mainly intracellular enzymes (IE), and the degradation ratio reached 49.6% within 30 min. The optimal pH for IE was 7.0, and the optimal temperature was 25 degreesC. Using DFT and HPLC-MS analysis, it was found that degradation mainly involved oxidation, hydrolysis and other reactions, and 3 degradation pathways and 14 products were identified, among which TCP (3,5,6-trichloro-2-pyridinol) was the main primary degradation product in addition to small molecules such as CO(2) and H(2)O. Finally, the whole genome of strain H27 was sequenced, and the related degrading genes and enzymes were investigated to improve the metabolic pathways. Strain H27 had perfect genes related to flagellar assembly and chemotaxis and tended to tolerate CP. Moreover, it can secrete esterase, phosphatase and other substances, which can form biofilms and degrade CP in the environment. In addition, CP enters the cell under the action of permeases or transporters, and it is metabolized by IE. The degradation mechanism of CP by strain H27 is speculated in this study, which provided a theoretical basis for enriching CP-degrading bacteria resources, improving degradation metabolic pathways and mechanisms, and applying strain H27 to environmental pollution remediation.
ESTHER : Liu_2023_Environ.Res__117315
PubMedSearch : Liu_2023_Environ.Res__117315
PubMedID: 37805180

Title : Alveolar macrophage-derived gVPLA2 promotes ventilator-induced lung injury via the cPLA2\/PGE2 pathway - Han_2023_BMC.Pulm.Med_23_494
Author(s) : Han H , Xie Q , Shao R , Li J , Du X
Ref : BMC Pulm Med , 23 :494 , 2023
Abstract : BACKGROUND: Ventilator-induced lung injury (VILI) is a clinical complication of mechanical ventilation observed in patients with acute respiratory distress syndrome. It is characterized by inflammation mediated by inflammatory cells and their secreted mediators. METHODS: To investigate the mechanisms underlying VILI, a C57BL/6J mouse model was induced using high tidal volume (HTV) mechanical ventilation. Mice were pretreated with Clodronate liposomes to deplete alveolar macrophages or administered normal bone marrow-derived macrophages or Group V phospholipase A2 (gVPLA2) intratracheally to inhibit bone marrow-derived macrophages. Lung tissue and bronchoalveolar lavage fluid (BALF) were collected to assess lung injury and measure Ca2+ concentration, gVPLA2, downstream phosphorylated cytoplasmic phospholipase A2 (p-cPLA2), prostaglandin E2 (PGE2), protein expression related to mitochondrial dynamics and mitochondrial damage. Cellular experiments were performed to complement the animal studies. RESULTS: Depletion of alveolar macrophages attenuated HTV-induced lung injury and reduced gVPLA2 levels in alveolar lavage fluid. Similarly, inhibition of alveolar macrophage-derived gVPLA2 had a similar effect. Activation of the cPLA2/PGE2/Ca2 + pathway in alveolar epithelial cells by gVPLA2 derived from alveolar macrophages led to disturbances in mitochondrial dynamics and mitochondrial dysfunction. The findings from cellular experiments were consistent with those of animal experiments. CONCLUSIONS: HTV mechanical ventilation induces the secretion of gVPLA2 by alveolar macrophages, which activates the cPLA2/PGE2/Ca2 + pathway, resulting in mitochondrial dysfunction. These findings provide insights into the pathogenesis of VILI and may contribute to the development of therapeutic strategies for preventing or treating VILI.
ESTHER : Han_2023_BMC.Pulm.Med_23_494
PubMedSearch : Han_2023_BMC.Pulm.Med_23_494
PubMedID: 38057837

Title : Activated autophagy-lysosomal pathway in dairy cows with hyperketonemia is associated with lipolysis of adipose tissues - Yu_2022_J.Dairy.Sci__
Author(s) : Yu H , Fan M , Chen X , Jiang X , Loor JJ , Aboragah A , Zhang C , Bai H , Fang Z , Shen T , Wang Z , Song Y , Li X , Liu G , Du X
Ref : J Dairy Sci , : , 2022
Abstract : Activated autophagy-lysosomal pathway (ALP) can degrade virtually all kinds of cellular components, including intracellular lipid droplets, especially during catabolic conditions. Sustained lipolysis and increased plasma fatty acids concentrations are characteristic of dairy cows with hyperketonemia. However, the status of ALP in adipose tissue during this physiological condition is not well known. The present study aimed to ascertain whether lipolysis is associated with activation of ALP in adipose tissues of dairy cows with hyperketonemia and in calf adipocytes. In vivo, blood and subcutaneous adipose tissue (SAT) biopsies were collected from nonhyperketonemic (nonHYK) cows [blood beta-hydroxybutyrate (BHB) concentration <1.2 mM, n = 10] and hyperketonemic (HYK) cows (blood BHB concentration 1.2-3.0 mM, n = 10) with similar days in milk (range: 3-9) and parity (range: 2-4). In vitro, calf adipocytes isolated from 5 healthy Holstein calves (1 d old, female, 30-40 kg) were differentiated and used for (1) treatment with lipolysis inducer isoproterenol (ISO, 10 microM, 3 h) or mammalian target of rapamycin inhibitor Torin1 (250 nM, 3 h), and (2) pretreatment with or without the ALP inhibitor leupeptin (10 microg/mL, 4 h) followed by ISO (10 microM, 3 h) treatment. Compared with nonHYK cows, serum concentration of free fatty acids was greater and serum glucose concentration, DMI, and milk yield were lower in HYK cows. In SAT of HYK cows, ratio of phosphorylated hormone-sensitive lipase to hormone-sensitive lipase, and protein abundance of adipose triacylglycerol lipase were greater, but protein abundance of perilipin 1 (PLIN1) and cell death-inducing DNA fragmentation factor-alpha-like effector c (CIDEC) was lower. In addition, mRNA abundance of autophagy-related 5 (ATG5), autophagy-related 7 (ATG7), and microtubule-associated protein 1 light chain 3 beta (MAP1LC3B), protein abundance of lysosome-associated membrane protein 1, and cathepsin D, and activity of beta-N-acetylglucosaminidase were greater, whereas protein abundance of sequestosome-1 (p62) was lower in SAT of HYK cows. In calf adipocytes, treatment with ISO or Torin1 decreased protein abundance of PLIN1, and CIDEC, and triacylglycerol content in calf adipocytes, but increased glycerol content in the supernatant of calf adipocytes. Moreover, the mRNA abundance of ATG5, ATG7, and MAP1LC3B was upregulated, the protein abundance of lysosome-associated membrane protein 1, cathepsin D, and activity of beta-N-acetylglucosaminidase were increased, whereas the protein abundance of p62 was decreased in calf adipocytes treated with ISO or Torin1 compared with control group. Compared with treatment with ISO alone, the protein abundance of p62, PLIN1, and CIDEC, and triacylglycerol content in calf adipocytes were higher, but the glycerol content in the supernatant of calf adipocytes was lower in ISO and leupeptin co-treated group. Overall, these data indicated that activated ALP is associated with increased lipolysis in adipose tissues of dairy cows with hyperketonemia and in calf adipocytes.
ESTHER : Yu_2022_J.Dairy.Sci__
PubMedSearch : Yu_2022_J.Dairy.Sci__
PubMedID: 35688731

Title : Circadian Rhythm and Neurotransmitters Are Potential Pathways through Which Ocean Acidification and Warming Affect the Metabolism of Thick-Shell Mussels - Tang_2022_Environ.Sci.Technol__
Author(s) : Tang Y , Du X , Sun S , Shi W , Han Y , Zhou W , Zhang J , Teng S , Ren P , Liu G
Ref : Environ Sci Technol , : , 2022
Abstract : Although the impacts of ocean acidification and warming on marine organisms have been increasingly documented, little is known about the affecting mechanism underpinning their interactive impacts on physiological processes such as metabolism. Therefore, the effects of these two stressors on metabolism were investigated in thick-shell mussel Mytilus coruscus in this study. In addition, because metabolism is primarily regulated by circadian rhythm and neurotransmitters, the impacts of acidification and warming on these two regulatory processes were also analyzed. The data obtained demonstrated that the metabolism of mussels (indicated by the clearance rate, oxygen consumption rate, ammonia excretion rate, O:N ratio, ATP content, activity of pyruvate kinase, and expression of metabolism-related genes) were significantly affected by acidification and warming, resulting in a shortage of energy supply (indicated by the in vivo content of ATP). In addition, exposure to acidification and warming led to evident disruption in circadian rhythm (indicated by the heartrate and the expression rhythm of Per2, Cry, and BMAL1) and neurotransmitters (indicated by the activity of acetyl cholinesterase and in vivo contents of ACh, GABA, and DA). These findings suggest that circadian rhythms and neurotransmitters might be potential routes through which acidification and warming interactively affect the metabolism of mussels.
ESTHER : Tang_2022_Environ.Sci.Technol__
PubMedSearch : Tang_2022_Environ.Sci.Technol__
PubMedID: 35293730

Title : Simultaneous Inhibitory Effects of All-Trans Astaxanthin on Acetylcholinesterase and Oxidative Stress - Wang_2022_Mar.Drugs_20_
Author(s) : Wang X , Zhang T , Chen X , Xu Y , Li Z , Yang Y , Du X , Jiang Z , Ni H
Ref : Mar Drugs , 20 : , 2022
Abstract : Alzheimers disease is a global neurodegenerative health concern. To prevent the disease, the simultaneous inhibition of acetylcholinesterase and oxidative stress is an efficient approach. In this study, the inhibition effect of all-trans astaxanthin mainly from marine organisms on acetylcholinesterase and oxidative stress was evaluated by a chemical-based method in vitro and cell assay model. The results show that all-trans astaxanthin was a reversible competitive inhibitor and exhibited a strong inhibition effect with half inhibitory concentration (IC(50) value) of 8.64 micromol/L. Furthermore, all-trans astaxanthin inhibited oxidative stress through reducing malondialdehyde content and increasing the activity of superoxide dismutase as well as catalase. All-trans astaxanthin could induce the changes of the secondary structure to reduce acetylcholinesterase activity. Molecular-docking analysis reveals that all-trans astaxanthin prevented substrate from binding to acetylcholinesterase by occupying the space of the active pocket to cause the inhibition. Our finding suggests that all-trans astaxanthin might be a nutraceutical supplement for Alzheimers disease prevention.
ESTHER : Wang_2022_Mar.Drugs_20_
PubMedSearch : Wang_2022_Mar.Drugs_20_
PubMedID: 35447920

Title : Integrated Proteomic and Metabolomic Analyses of Chicken Ovary Revealed the Crucial Role of Lipoprotein Lipase on Lipid Metabolism and Steroidogenesis During Sexual Maturity - Cui_2022_Front.Physiol_13_885030
Author(s) : Cui Z , Ning Z , Deng X , Du X , Amevor FK , Liu L , Kang X , Tian Y , Wang Y , Li D , Zhao X
Ref : Front Physiol , 13 :885030 , 2022
Abstract : During sexual maturation and ovulatory cycle in chickens, ovaries undergo dynamic morphological and functional changes. The aim of this study was to evaluate the integrated proteome and metabolome analyses of chicken ovaries to characterize the changes in protein and metabolite profiles during sexual maturity. The ovary of Rohman layers before (125 days of age) and after (139 days of age) sexual maturation were collected for proteome and metabolome sequencing. The results showed that a total of 680 differentially expressed proteins (DEPs) and 1,046 differential metabolites (DMs) were identified in the chicken ovary during sexual maturity. Among the DEPs, 595 proteins were up-regulated and 85 were down-regulated, whereas 519 metabolites were up-regulated and 527 were down-regulated. KEGG pathway enrichment analysis showed that DEPs were significantly enriched in glycerolipid metabolism, calcium signaling pathway, folate biosynthesis, fat digestion and absorption, NF-kB signaling pathway, and PPAR signaling pathway. However, DMs were significantly enriched in the metabolism pathways, PPAR signalling pathway, glycerolipid metabolism, ferroptosis, biosynthesis of amino acids, and biosynthesis of unsaturated fatty acids. The results of the integrated analyses of DEPs and DMs revealed that the PPAR signaling pathway and glycerolipid metabolism were the most significantly enriched pathways. Among the identified DEPs, lipoprotein lipase (LPL) was upregulated in sexually mature chicken ovaries and was significantly enriched in the glycerolipid metabolism pathway, which may partially explain the possible reasons for steroidogenesis and lipid reserves responsible for oocyte maturation and ovarian follicle development during sexual maturity in chickens. The results further revealed that LPL silencing decreased the content of lipid droplets (LDs), as well as the mRNA expression of lipid metabolism-related genes including; sterol regulatory element binding protein-1 (SREBP-1) and fatty acid synthase (FASN); and steroidogenesis-related genes such as; cytochrome P450 11A1 (CYP11A1) and steroidogenic acute regulatory (StAR). The present study revealed that upregulation of LPL in the chicken ovary during sexual maturity promotes granulosa cell (GC) lipid metabolism and steroidogenesis. These findings provide a theoretical support for further studies to elucidate the mechanism of lipid metabolism to regulate the function of avian GCs during sexual maturity in chickens.
ESTHER : Cui_2022_Front.Physiol_13_885030
PubMedSearch : Cui_2022_Front.Physiol_13_885030
PubMedID: 35574488

Title : Molecular basis for high ligand sensitivity and selectivity of strigolactone receptors in Striga - Wang_2021_Plant.Physiol_185_1411
Author(s) : Wang Y , Yao R , Du X , Guo L , Chen L , Xie D , Smith SM
Ref : Plant Physiol , 185 :1411 , 2021
Abstract : Seeds of the root parasitic plant Striga hermonthica can sense very low concentrations of strigolactones (SLs) exuded from host roots. The S. hermonthica hyposensitive to light (ShHTL) proteins are putative SL receptors, among which ShHTL7 reportedly confers sensitivity to picomolar levels of SL when expressed in Arabidopsis thaliana. However, the molecular mechanism underlying ShHTL7 sensitivity is unknown. Here we determined the ShHTL7 crystal structure and quantified its interactions with various SLs and key interacting proteins. We established that ShHTL7 has an active-site pocket with broad-spectrum response to different SLs and moderate affinity. However, in contrast to other ShHTLs, we observed particularly high affinity of ShHTL7 for F-box protein AtMAX2. Furthermore, ShHTL7 interacted with AtMAX2 and with transcriptional regulator AtSMAX1 in response to nanomolar SL concentration. ShHTL7 mutagenesis analyses identified surface residues that contribute to its high-affinity binding to AtMAX2 and residues in the ligand binding pocket that confer broad-spectrum response to SLs with various structures. Crucially, yeast-three hybrid experiments showed that AtMAX2 confers responsiveness of the ShHTL7-AtSMAX1 interaction to picomolar levels of SL in line with the previously reported physiological sensitivity. These findings highlight the key role of SL-induced MAX2-ShHTL7-SMAX1 complex formation in determining the sensitivity to SL. Moreover, these data suggest a strategy to screen for compounds that could promote suicidal seed germination at physiologically relevant levels.
ESTHER : Wang_2021_Plant.Physiol_185_1411
PubMedSearch : Wang_2021_Plant.Physiol_185_1411
PubMedID: 33793945
Gene_locus related to this paper: strhe-ShHTL7

Title : CRISPR\/Cas9-mediated genome editing of Schistosoma mansoni acetylcholinesterase - You_2021_FASEB.J_35_e21205
Author(s) : You H , Mayer JU , Johnston RL , Sivakumaran H , Ranasinghe S , Rivera V , Kondrashova O , Koufariotis LT , Du X , Driguez P , French JD , Waddell N , Duke MG , Ittiprasert W , Mann VH , Brindley PJ , Jones MK , McManus DP
Ref : FASEB Journal , 35 :e21205 , 2021
Abstract : CRISPR/Cas9-mediated genome editing shows cogent potential for the genetic modification of helminth parasites. We report successful gene knock-in (KI) into the genome of the egg of Schistosoma mansoni by combining CRISPR/Cas9 with single-stranded oligodeoxynucleotides (ssODNs). We edited the acetylcholinesterase (AChE) gene of S. mansoni targeting two guide RNAs (gRNAs), X5 and X7, located on exon 5 and exon 7 of Smp_154600, respectively. Eggs recovered from livers of experimentally infected mice were transfected by electroporation with a CRISPR/Cas9-vector encoding gRNA X5 or X7 combining with/ without a ssODN donor. Next generation sequencing analysis of reads of amplicon libraries spanning targeted regions revealed that the major modifications induced by CRISPR/Cas9 in the eggs were generated by homology directed repair (HDR). Furthermore, soluble egg antigen from AChE-edited eggs exhibited markedly reduced AChE activity, indicative that programed Cas9 cleavage mutated the AChE gene. Following injection of AChE-edited schistosome eggs into the tail veins of mice, an significantly enhanced Th2 response involving IL-4, -5, -10, and-13 was detected in lung cells and splenocytes in mice injected with X5-KI eggs in comparison to control mice injected with unmutated eggs. A Th2-predominant response, with increased levels of IL-4, -13, and GATA3, also was induced by X5 KI eggs in small intestine-draining mesenteric lymph node cells when the gene-edited eggs were introduced into the subserosa of the ileum of the mice. These findings confirmed the potential and the utility of CRISPR/Cas9-mediated genome editing for functional genomics in schistosomes.
ESTHER : You_2021_FASEB.J_35_e21205
PubMedSearch : You_2021_FASEB.J_35_e21205
PubMedID: 33337558

Title : Functional analysis of the GbDWARF14 gene associated with branching development in cotton - Wang_2019_PeerJ_7_e6901
Author(s) : Wang P , Zhang S , Qiao J , Sun Q , Shi Q , Cai C , Mo J , Chu Z , Yuan Y , Du X , Miao Y , Zhang X , Cai Y
Ref : PeerJ , 7 :e6901 , 2019
Abstract : Plant architecture, including branching pattern, is an important agronomic trait of cotton crops. In recent years, strigolactones (SLs) have been considered important plant hormones that regulate branch development. In some species such as Arabidopsis, DWARF14 is an unconventional receptor that plays an important role in the SL signaling pathway. However, studies on SL receptors in cotton are still lacking. Here, we cloned and analysed the structure of the GbD14 gene in Gossypium barbadense and found that it contains the domains necessary for a SL receptor. The GbD14 gene was expressed primarily in the roots, leaves and vascular bundles, and the GbD14 protein was determined via GFP to localize to the cytoplasm and nucleus. Gene expression analysis revealed that the GbD14 gene not only responded to SL signals but also was differentially expressed between cotton plants whose types of branching differed. In particular, GbD14 was expressed mainly in the axillary buds of normal-branching cotton, while it was expressed the most in the leaves of nulliplex-branch cotton. In cotton, the GbD14 gene can be induced by SL and other plant hormones, such as indoleacetic acid, abscisic acid, and jasmonic acid. Compared with wild-type Arabidopsis, GbD14-overexpressing Arabidopsis responded more rapidly to SL signals. Moreover, we also found that GbD14 can rescue the multi-branched phenotype of Arabidopsis Atd14 mutants. Our results indicate that the function of GbD14 is similar to that of AtD14, and GbD14 may be a receptor for SL in cotton and involved in regulating branch development. This research provides a theoretical basis for a profound understanding of the molecular mechanism of branch development and ideal plant architecture for cotton breeding improvements.
ESTHER : Wang_2019_PeerJ_7_e6901
PubMedSearch : Wang_2019_PeerJ_7_e6901
PubMedID: 31143538

Title : A Probe for Fluorescence Detection of the Acetylcholinesterase Activity Based on Molecularly Imprinted Polymers Coated Carbon Dots - Jia_2019_Chem.Pharm.Bull.(Tokyo)_67_795
Author(s) : Jia Z , Luo Y , Wen H , Huang S , Du X , Xue W
Ref : Chem Pharm Bull (Tokyo) , 67 :795 , 2019
Abstract : This paper presents a new probe for fluorescence detection of the acetylcholinesterase (AChE) activity based on molecularly imprinted polymer (MIP) coated carbon dots (C-dots) composite. The C-dots were hydrothermally synthesized with grafted silica surface and sealed with molecularly imprinted polymers in silica pores (MIP@C-dots) in situ. Removed the original template molecules, the MIP@C-dots composite exhibits quite high selectivity for acetylthiocholine (ACh). With AChE, its substrate ACh will be hydrolyzed into thiocholine and the fluorescence signals exhibit a dramatic decrease at 465 nm, Under optimal conditions, the fluorescent probe shows sensitive responses to AChE in the range of 0.01-0.6 mU/mL. The detection limits of AChE are as low as 3 microU/mL. These experiments results validate the novel fluorescent probe based on MIP@C-dots composite, paving a new way to evaluation of AChE activity and Screening inhibitors.
ESTHER : Jia_2019_Chem.Pharm.Bull.(Tokyo)_67_795
PubMedSearch : Jia_2019_Chem.Pharm.Bull.(Tokyo)_67_795
PubMedID: 31061298

Title : Schisanhenol improves learning and memory in scopolamine-treated mice by reducing acetylcholinesterase activity and attenuating oxidative damage through SIRT1-PGC-1alpha-Tau signaling pathway - Han_2018_Int.J.Neurosci__1
Author(s) : Han Y , Yang H , Li L , Du X , Sun C
Ref : International Journal of Neuroscience , :1 , 2018
Abstract : Schisanhenol is a compound derived from the fruit of a traditional Chinese herb Schisandra rubriflora. The aim of the present study was to evaluate the effect of Schisanhenol on the cognitive impairment induced by scopolamine. The learning and memorial ability of mice was monitored by water morris maze. Hippocampus of mice were collected after behavioral testing and the activity of SOD, MDA, GSH-px, AChE were measured with standard biochemical procedures. Western blotting was used to analyze the expression of SIRT1, PGC-1alpha, phosphorylated Tau proteins. Intraperitoneal administration of Schisanhenol (10, 30 or 100 mg/kg) significantly attenuated scopolamine-induced cognitive impairment in water morris maze. In addition, Schisanhenol increased the activity of SOD and GSH-px while decreased the content of AChE and MDA. Furthermore, western blotting analysis revealed that Schisanhenol increased the levels of SIRT1 and PGC-1alpha and decreased the level of phosphorylated Tau protein (Ser 396) significantly in the hippocampal tissues. Taken together, the present study suggests that Schisanhenol may block scopolamine-induced learning deficit and enhance cognitive function, the mechanism via improve the cholinergic system and antioxidant ability, activate SIRT1-PGC1alpha signaling, inhibit the phosphorylation of Tau, and would be an effective candidate against cognitive disorders, such as Alzheimer's disease.
ESTHER : Han_2018_Int.J.Neurosci__1
PubMedSearch : Han_2018_Int.J.Neurosci__1
PubMedID: 30033800

Title : Soluble epoxide hydrolase inhibitors, t-AUCB, downregulated miR-133 in a mouse model of myocardial infarction - Gui_2018_Lipids.Health.Dis_17_129
Author(s) : Gui Y , Li D , Chen J , Wang Y , Hu J , Liao C , Deng L , Xiang Q , Yang T , Du X , Zhang S , Xu D
Ref : Lipids Health Dis , 17 :129 , 2018
Abstract : BACKGROUND: It has been demonstrated that soluble epoxide hydrolase inhibitors (sEHIs) are protective against ischemia-induced lethal arrhythmias, but the mechanisms involved are unknown. Previously, we showed that sEHIs might reduce the incidence of ischemic arrhythmias by suppressing microRNA-1 (miR-1) in the myocardium. As miR-1 and miR-133 have the same proarrhythmic effects in the heart, we assumed that the beneficial effects of sEHIs might also relate to the regulation of miR-133. METHODS: A mouse model of myocardial infarction (MI) was established by ligating the coronary artery. The sEHI t-AUCB (trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid) was administered daily for 7 days before MI. Myocardial infarct size and cardiac function was assessed at 24 h post-MI. The miRNA expression profiles of sham and MI mice treated with or without t-AUCB were determined by microarray and verified by real-time PCR. The incidence of arrhythmias was assessed by in vivo electrophysiologic studies. The mRNA levels of miR-133, its target genes (KCNQ1 [potassium voltage-gated channel subfamily Q member 1] and KCNH2 [potassium voltage-gated channel subfamily H member 2]), and serum response factor (SRF) were measured by real-time PCR; KCNQ1, KCNH2, and SRF protein levels were assessed by western blotting. RESULTS: We demonstrated that the treatment with sEHIs could reduce infarct size, improve cardia function, and prevent the development of cardiac arrhythmias in MI mice. The expression levels of 14 miRNAs differed between the sham and MI groups. t-AUCB treatment altered the expression of eight miRNAs: two were upregulated and six were downregulated. Of these, the muscle-specific miR-133 was downregulated in the ischemic myocardium. In line with this, up-regulation of miR-133 and down-regulation of KCNQ1 and KCNH2 mRNA/protein were observed in ischemic myocaridum, whereas administration of sEHIs produced an opposite effect. In addition, miR-133 overexpression inhibited expression of the target mRNA, whereas t-AUCB reversed the effects. Furthermore, SRF might participate in the negative regulation of miR-133 by t-AUCB. CONCLUSIONS: In MI mice, sEHI t-AUCB can repress miR-133, consequently stimulating KCNQ1 and KCNH2 mRNA and protein expression, suggesting a possible mechanism for its potential therapeutic application in ischemic arrhythmias.
ESTHER : Gui_2018_Lipids.Health.Dis_17_129
PubMedSearch : Gui_2018_Lipids.Health.Dis_17_129
PubMedID: 29843720

Title : Rice DWARF14 acts as an unconventional hormone receptor for strigolactone - Yao_2018_J.Exp.Bot_69_2355
Author(s) : Yao R , Wang L , Li Y , Chen L , Li S , Du X , Wang B , Yan J , Li J , Xie D
Ref : J Exp Bot , 69 :2355 , 2018
Abstract : Strigolactones (SLs) act as an important class of phytohormones to regulate plant shoot branching, and also serve as rhizosphere signals to mediate interactions of host plants with soil microbes and parasitic weeds. SL receptors in dicots, such as DWARF14 in Arabidopsis (AtD14), RMS3 in pea, and ShHTL7 in Striga, serve as unconventional receptors that hydrolyze SLs into a D-ring-derived intermediate CLIM and irreversibly bind CLIM to trigger SL signal transduction. Here, we show that D14 from the monocot rice can complement Arabidopsis d14 mutant and interact with the SL signaling components in Arabidopsis. Our results further reveal that rice D14, similar to SL receptors in dicots, also serves as an unconventional hormone receptor that generates and irreversibly binds the active form of SLs. These findings uncover the conserved functions of D14 proteins in monocots and dicots.
ESTHER : Yao_2018_J.Exp.Bot_69_2355
PubMedSearch : Yao_2018_J.Exp.Bot_69_2355
PubMedID: 29365172

Title : Suppression of Schistosoma japonicum Acetylcholinesterase Affects Parasite Growth and Development - You_2018_Int.J.Mol.Sci_19_
Author(s) : You H , Liu C , Du X , Nawaratna S , Rivera V , Harvie M , Jones M , McManus DP
Ref : Int J Mol Sci , 19 : , 2018
Abstract : To further investigate the importance of Schistosoma japonicum acetylcholinesterase (SjAChE) in cholinergic signaling for parasite growth and development, we used RNA interference (RNAi) to knock-down its expression in adults and eggs in vitro. This resulted in its reduced transcription but also expression of other important genes involved both in cholinergic signaling and glucose uptake were impacted substantially. Significant decreases in AChE protein expression, AChE enzymatic activity, and glucose uptake were observed in the SjAChE-knockdown parasites compared with luciferase controls. In vaccine/challenge experiments, we found that immunization of mice with recombinant SjAChE (rSjAChE) expressed in Escherichia coli elicited reductions in male worm numbers (33%), liver granuloma density (41%), and reduced numbers of mature intestinal eggs (73%) in the vaccinated group compared with the control group. These results indicate AChE plays an important role in the metabolism of male worms, and impacts indirectly on female fecundity leading to increased numbers of immature eggs being released and reduced sizes of liver granulomas. Furthermore, cytokine analysis showed that immunization of mice with rSjAChE elicited a predominantly Th1-type immune response characterized by increased production of IFNgamma in splenic CD4(+) T cells of vaccinated mice. The study confirms the potential of SjAChE as a vaccine/drug candidate against zoonotic schistosomiasis japonica.
ESTHER : You_2018_Int.J.Mol.Sci_19_
PubMedSearch : You_2018_Int.J.Mol.Sci_19_
PubMedID: 30115897

Title : Cellular Uptake of A Taurine-Modified, Ester Bond-Decorated D-Peptide Derivative via Dynamin-Based Endocytosis and Macropinocytosis - Zhou_2018_Mol.Ther_26_648
Author(s) : Zhou J , Du X , Berciu C , Del Signore SJ , Chen X , Yamagata N , Rodal AA , Nicastro D , Xu B
Ref : Mol Ther , 26 :648 , 2018
Abstract : Most of the peptides used for promoting cellular uptake bear positive charges. In our previous study, we reported an example of taurine (bearing negative charges in physiological conditions) promoting cellular uptake of D-peptides. Taurine, conjugated to a small D-peptide via an ester bond, promotes the cellular uptake of this D-peptide. Particularly, intracellular carboxylesterase (CES) instructs the D-peptide to self-assemble and to form nanofibers, which largely disfavors efflux and further enhances the intracellular accumulation of the D-peptide, as supported by that the addition of CES inhibitors partially impaired cellular uptake of this molecule in mammalian cell lines. Using dynamin 1, 2, and 3 triple knockout (TKO) mouse fibroblasts, we demonstrated that cells took up this molecule via macropinocytosis and dynamin-dependent endocytosis. Imaging of Drosophila larval blood cells derived from endocytic mutants confirmed the involvement of multiple endocytosis pathways. Electron microscopy (EM) indicated that the precursors can form aggregates on the cell surface to facilitate the cellular uptake via macropinocytosis. EM also revealed significantly increased numbers of vesicles in the cytosol. This work provides new insights into the cellular uptake of taurine derivative for intracellular delivery and self-assembly of D-peptides.
ESTHER : Zhou_2018_Mol.Ther_26_648
PubMedSearch : Zhou_2018_Mol.Ther_26_648
PubMedID: 29396265

Title : ShHTL7 is a non-canonical receptor for strigolactones in root parasitic weeds -
Author(s) : Yao R , Wang F , Ming Z , Du X , Chen L , Wang Y , Zhang W , Deng H , Xie D
Ref : Cell Res , 27 :838 , 2017
PubMedID: 28059066
Gene_locus related to this paper: strhe-ShHTL7

Title : Acetylcholinesterase and Nicotinic Acetylcholine Receptors in Schistosomes and Other Parasitic Helminths - You_2017_Molecules_22_
Author(s) : You H , Liu C , Du X , McManus DP
Ref : Molecules , 22 : , 2017
Abstract : Schistosomiasis, which is caused by helminth trematode blood flukes of the genus Schistosoma, is a serious health and economic problem in tropical areas, and the second most prevalent parasitic disease after malaria. Currently, there is no effective vaccine available and treatment is entirely dependent on a single drug, praziquantel (PZQ), raising a significant potential public health threat due to the emergence of PZQ drug resistance. It is thus urgent and necessary to explore novel therapeutic targets for the treatment of schistosomiasis. Previous studies demonstrated that acetylcholinesterase (AChE) and nicotinic acetylcholine receptors (nAChRs) play important roles in the schistosome nervous system and ion channels, both of which are targeted by a number of currently approved and marketed anthelminthic drugs. To improve understanding of the functions of the cholinergic system in schistosomes, this article reviews previous studies on AChE and nAChRs in schistosomes and other helminths and discusses their potential as suitable targets for vaccine development and drug design against schistosomiasis.
ESTHER : You_2017_Molecules_22_
PubMedSearch : You_2017_Molecules_22_
PubMedID: 28906438

Title : Functional characterisation of Schistosoma japonicum acetylcholinesterase - You_2016_Parasit.Vectors_9_328
Author(s) : You H , Gobert GN , Du X , Pali G , Cai P , Jones MK , McManus DP
Ref : Parasit Vectors , 9 :328 , 2016
Abstract : BACKGROUND: Acetylcholinesterase (AChE) is an important metabolic enzyme of schistosomes present in the musculature and on the surface of the blood stage where it has been implicated in the modulation of glucose scavenging from mammalian host blood. As both a target for the antischistosomal drug metrifonate and as a potential vaccine candidate, AChE has been characterised in the schistosome species Schistosoma mansoni, S. haematobium and S. bovis, but not in S. japonicum. Recently, using a schistosome protein microarray, a predicted S. japonicum acetylcholinesterase precursor was significantly targeted by protective IgG1 immune responses in S. haematobium-exposed individuals that had acquired drug-induced resistance to schistosomiasis after praziquantel treatment.
RESULTS: We report the full-length cDNA sequence and describe phylogenetic and molecular structural analysis to facilitate understanding of the biological function of AChE (SjAChE) in S. japonicum. The protein has high sequence identity (88 %) with the AChEs in S. mansoni, S. haematobium and S. bovis and has 25 % sequence similarity with human AChE, suggestive of a highly specialised role for the enzyme in both parasite and host. We immunolocalized SjAChE and demonstrated its presence on the surface of adult worms and schistosomula, as well as its lower expression in parenchymal regions. The relatively abundance of AChE activity (90 %) present on the surface of adult S. japonicum when compared with that reported in other schistosomes suggests SjAChE may be a more effective drug or immunological target against this species. We also demonstrate that the classical inhibitor of AChE, BW285c51, inhibited AChE activity in tegumental extracts of paired worms, single males and single females by 59, 22 and 50 %, respectively, after 24 h incubation with 200 muM BW284c51.
CONCLUSIONS: These results build on previous studies in other schistosome species indicating major differences in the enzyme between parasite and mammalian host, and provide further support for the design of an anti-schistosome intervention targeting AChE.
ESTHER : You_2016_Parasit.Vectors_9_328
PubMedSearch : You_2016_Parasit.Vectors_9_328
PubMedID: 27283196
Gene_locus related to this paper: schja-a0a191sw41

Title : Bioactivities of phytochemicals in Araiostegia yunnanensis (Christ) - Chen_2015_Food.Chem_186_37
Author(s) : Chen L , Xu W , Shao R , Du X
Ref : Food Chem , 186 :37 , 2015
Abstract : The profile and bioactivity of phytochemicals in Araiostegia yunnanensis (Christ) Cop were investigated. The total flavonoids content in A. yunnanensis is about 84.90mg/g. By means of HPLC-DAD-ESI-MS, the main flavonoids in A. yunnanensis were tentatively identified as myricetin 3-O-rhamnosylglucoside, eriodictyol 7-O-rutinoside, quercetin 3-O-rutinoside, luteolin-7-O-apiosylglucoside, quercetin 3-O-rhamnosylgalactoside, and luteolin 7-O-glucoside. The extract (0.268mg/ml total flavonoids) from A. yunnanensis showed very strong superoxide anion radical scavenging potential and reducing power, which are higher than those of rutin (0.25mg/ml). The extract (0.268mg/ml total flavonoids) from A. yunnanensis exhibited similar DPPH scavenging activity with rutin (0.25mg/ml). However, rutin (0.25mg/ml) showed a significantly higher ABTS radical scavenging effect than that of the extract (0.268mg/ml total flavonoids) from A. yunnanensis. The methanol extract from A. yunnanensis showed obviously cytotoxic effects on A549 cells and it had no effect against acetylcholinesterase.
ESTHER : Chen_2015_Food.Chem_186_37
PubMedSearch : Chen_2015_Food.Chem_186_37
PubMedID: 25976789

Title : Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution - Li_2015_Nat.Biotechnol_33_524
Author(s) : Li F , Fan G , Lu C , Xiao G , Zou C , Kohel RJ , Ma Z , Shang H , Ma X , Wu J , Liang X , Huang G , Percy RG , Liu K , Yang W , Chen W , Du X , Shi C , Yuan Y , Ye W , Liu X , Zhang X , Liu W , Wei H , Wei S , Zhu S , Zhang H , Sun F , Wang X , Liang J , Wang J , He Q , Huang L , Cui J , Song G , Wang K , Xu X , Yu JZ , Zhu Y , Yu S
Ref : Nat Biotechnol , 33 :524 , 2015
Abstract : Gossypium hirsutum has proven difficult to sequence owing to its complex allotetraploid (AtDt) genome. Here we produce a draft genome using 181-fold paired-end sequences assisted by fivefold BAC-to-BAC sequences and a high-resolution genetic map. In our assembly 88.5% of the 2,173-Mb scaffolds, which cover 89.6% approximately 96.7% of the AtDt genome, are anchored and oriented to 26 pseudochromosomes. Comparison of this G. hirsutum AtDt genome with the already sequenced diploid Gossypium arboreum (AA) and Gossypium raimondii (DD) genomes revealed conserved gene order. Repeated sequences account for 67.2% of the AtDt genome, and transposable elements (TEs) originating from Dt seem more active than from At. Reduction in the AtDt genome size occurred after allopolyploidization. The A or At genome may have undergone positive selection for fiber traits. Concerted evolution of different regulatory mechanisms for Cellulose synthase (CesA) and 1-Aminocyclopropane-1-carboxylic acid oxidase1 and 3 (ACO1,3) may be important for enhanced fiber production in G. hirsutum.
ESTHER : Li_2015_Nat.Biotechnol_33_524
PubMedSearch : Li_2015_Nat.Biotechnol_33_524
PubMedID: 25893780
Gene_locus related to this paper: gosra-a0a0d2rxs2 , gosra-a0a0d2tng2 , gosra-a0a0d2twz7 , goshi-a0a1u8hr03 , gosra-a0a0d2vdc5 , goshi-a0a1u8ljh5 , gosra-a0a0d2vj24 , goshi-a0a1u8pxd3 , gosra-a0a0d2sr31 , goshi-a0a1u8knd1 , goshi-a0a1u8nhw9 , goshi-a0a1u8mt09 , goshi-a0a1u8kis4 , goshi-a0a1u8ibk3 , goshi-a0a1u8ieg2 , goshi-a0a1u8iki6 , goshi-a0a1u8jvp4 , goshi-a0a1u8jw35 , gosra-a0a0d2pzd7 , goshi-a0a1u8ied7

Title : The Toxicity and Detoxifying Mechanism of Cycloxaprid and Buprofezin in Controlling Sogatella furcifera (Homoptera: Delphacidae) - Chang_2015_J.Insect.Sci_15_
Author(s) : Chang X , Yuan Y , Zhang T , Wang D , Du X , Wu X , Chen H , Chen Y , Jiao Y , Teng H
Ref : J Insect Sci , 15 : , 2015
Abstract : The effects of cycloxaprid (a modified neonicotinoid insecticide) and buprofezin (a thiadiazine insecticide) on mortality of the white-backed planthopper (WBPH), Sogatella furcifera, were determined in laboratory assays. Cycloxaprid killed WBPH nymphs and adults but buprofezin killed only nymphs, and cycloxaprid acted faster than buprofezin. One day after infestation, mortality of third-instar nymphs was >65% with cycloxaprid at 125 mg liter(-1) but was <38% with buprofezin at 148 mg liter(-1). By the 4th day after infestation, however, control of nymphs by the two insecticides was similar, and cycloxaprid at 125 mg liter(-1) caused >/=80% mortality of adults but buprofezin at 148 mg liter(-1) (the highest rate tested) caused almost no adult mortality. LC50 values for cycloxaprid were lowest with nymphs, intermediate with adult males, and highest with adult females. Although buprofezin was slower acting than cycloxaprid, its LC50 for nymphs 5 d after infestation was 3.79-fold lower than that of cycloxaprid. Mean carboxylesterase (CarE) specific activity of nymphal WBPH treated with cycloxaprid and buprofezin was higher than that of control, but there was no significant difference between cycloxaprid and control (no insecticide), and it was significantly higher for buprofezin than those of cycloxaprid and control. For glutathione S-transferase and mixed function oxygenase, the specific activity of nymphal WBPH treated with buprofezin was significantly higher than those of cycloxaprid and control, too.
ESTHER : Chang_2015_J.Insect.Sci_15_
PubMedSearch : Chang_2015_J.Insect.Sci_15_
PubMedID: 26175461

Title : Lipase-nanoporous gold biocomposite modified electrode for reliable detection of triglycerides - Wu_2014_Biosens.Bioelectron_53_26
Author(s) : Wu C , Liu X , Li Y , Du X , Wang X , Xu P
Ref : Biosensors & Bioelectronics , 53 :26 , 2014
Abstract : For triglycerides biosensor design, protein immobilization is necessary to create the interface between the enzyme and the electrode. In this study, a glassy carbon electrode (GCE) was modified with lipase-nanoporous gold (NPG) biocomposite (denoted as lipase/NPG/GCE). Due to highly conductive, porous, and biocompatible three-dimensional structure, NPG is suitable for enzyme immobilization. In cyclic voltammetry experiments, the lipase/NPG/GCE bioelectrode displayed surface-confined reaction in a phosphate buffer solution. Linear responses were obtained for tributyrin concentrations ranging from 50 to 250 mg dl(-1) and olive oil concentrations ranging from 10 to 200 mg dl(-1). The value of apparent Michaelis-Menten constant for tributyrin was 10.67 mg dl(-1) and the detection limit was 2.68 mg dl(-1). Further, the lipase/NPG/GCE bioelectrode had strong anti-interference ability against urea, glucose, cholesterol, and uric acid as well as a long shelf-life. For the detection of triglycerides in human serum, the values given by the lipase/NPG/GCE bioelectrode were in good agreement with those of an automatic biochemical analyzer. These properties along with a long self-life make the lipase/NPG/GCE bioelectrode an excellent choice for the construction of triglycerides biosensor.
ESTHER : Wu_2014_Biosens.Bioelectron_53_26
PubMedSearch : Wu_2014_Biosens.Bioelectron_53_26
PubMedID: 24121205

Title : Dictyostelium lipid droplets host novel proteins - Du_2013_Eukaryot.Cell_12_1517
Author(s) : Du X , Barisch C , Paschke P , Herrfurth C , Bertinetti O , Pawolleck N , Otto H , Ruhling H , Feussner I , Herberg FW , Maniak M
Ref : Eukaryot Cell , 12 :1517 , 2013
Abstract : Across all kingdoms of life, cells store energy in a specialized organelle, the lipid droplet. In general, it consists of a hydrophobic core of triglycerides and steryl esters surrounded by only one leaflet derived from the endoplasmic reticulum membrane to which a specific set of proteins is bound. We have chosen the unicellular organism Dictyostelium discoideum to establish kinetics of lipid droplet formation and degradation and to further identify the lipid constituents and proteins of lipid droplets. Here, we show that the lipid composition is similar to what is found in mammalian lipid droplets. In addition, phospholipids preferentially consist of mainly saturated fatty acids, whereas neutral lipids are enriched in unsaturated fatty acids. Among the novel protein components are LdpA, a protein specific to Dictyostelium, and Net4, which has strong homologies to mammalian DUF829/Tmem53/NET4 that was previously only known as a constituent of the mammalian nuclear envelope. The proteins analyzed so far appear to move from the endoplasmic reticulum to the lipid droplets, supporting the concept that lipid droplets are formed on this membrane.
ESTHER : Du_2013_Eukaryot.Cell_12_1517
PubMedSearch : Du_2013_Eukaryot.Cell_12_1517
PubMedID: 24036346
Gene_locus related to this paper: dicdi-q54yr8 , human-TMEM53

Title : The assessment of environmental pollution along the coast of Beibu Gulf, northern South China Sea: an integrated biomarker approach in the clam Meretrix meretrix - Meng_2013_Mar.Environ.Res_85_64
Author(s) : Meng F , Wang Z , Cheng F , Du X , Fu W , Wang Q , Yi X , Li Y , Zhou Y
Ref : Mar Environ Research , 85 :64 , 2013
Abstract : The clam Meretrix meretrix was used as a biomonitor to implement an environmental monitoring program along the coast of Beibu Gulf in October 2011. This program not only analyzed biomarkers including acetylcholinesterase, glutathione peroxidase, glutathione S-transferase, catalase and superoxide dismutase activities, total glutathione content and lipid peroxidation level in M. meretrix but also adopted a multi-biomarker approach - integrated biomarker response (IBR) to assess the environmental quality in this ecosystem. In addition, the metal (Hg, As, Cu, Pb, Zn, Cd and Cr) and polychlorinated biphenyls (PCBs) content in the surface sediment at the study area were also measured. The results showed that IBR index was able to distinguish a space trend between sampling sites with different degrees of anthropogenic environmental stress. Integrated contamination degree were displayed in the form of star plots and compared to IBR plots. There was a visual consistency between the pollution level and IBR variation. Based on the results, it was proved that the IBR method coupled with chemical analysis was quite useful for the assessment of environmental pollution in the coastal system.
ESTHER : Meng_2013_Mar.Environ.Res_85_64
PubMedSearch : Meng_2013_Mar.Environ.Res_85_64
PubMedID: 23422511

Title : The oyster genome reveals stress adaptation and complexity of shell formation - Zhang_2012_Nature_490_49
Author(s) : Zhang G , Fang X , Guo X , Li L , Luo R , Xu F , Yang P , Zhang L , Wang X , Qi H , Xiong Z , Que H , Xie Y , Holland PW , Paps J , Zhu Y , Wu F , Chen Y , Wang J , Peng C , Meng J , Yang L , Liu J , Wen B , Zhang N , Huang Z , Zhu Q , Feng Y , Mount A , Hedgecock D , Xu Z , Liu Y , Domazet-Loso T , Du Y , Sun X , Zhang S , Liu B , Cheng P , Jiang X , Li J , Fan D , Wang W , Fu W , Wang T , Wang B , Zhang J , Peng Z , Li Y , Li N , Chen M , He Y , Tan F , Song X , Zheng Q , Huang R , Yang H , Du X , Chen L , Yang M , Gaffney PM , Wang S , Luo L , She Z , Ming Y , Huang W , Huang B , Zhang Y , Qu T , Ni P , Miao G , Wang Q , Steinberg CE , Wang H , Qian L , Liu X , Yin Y
Ref : Nature , 490 :49 , 2012
Abstract : The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa.
ESTHER : Zhang_2012_Nature_490_49
PubMedSearch : Zhang_2012_Nature_490_49
PubMedID: 22992520
Gene_locus related to this paper: cragi-k1qzk7 , cragi-k1rad0 , cragi-k1p6v9 , cragi-k1pa46 , cragi-k1pga2 , cragi-k1pp63 , cragi-k1pwa8 , cragi-k1q0b1.1 , cragi-k1q0b1.2 , cragi-k1q1h2 , cragi-k1q2z6 , cragi-k1qaj8 , cragi-k1qaw5 , cragi-k1qhl5 , cragi-k1qly1 , cragi-k1qqb1.1 , cragi-k1qqb1.2 , cragi-k1qs61 , cragi-k1qs99 , cragi-k1qwl6 , cragi-k1r068 , cragi-k1r0n3.1 , cragi-k1r0n3.2 , cragi-k1r0r4 , cragi-k1r1i9 , cragi-k1r8q9 , cragi-k1rgi1 , cragi-k1rig4 , cragi-k1s0a7.1 , cragi-k1s0a7.2 , cragi-k1s0a7.3 , cragi-k1q6q0 , cragi-k1rru1 , cragi-k1qfi4 , cragi-k1qvm5 , cragi-k1qq58 , cragi-k1qdc0 , cragi-k1r754 , cragi-k1pje5 , cragi-k1qca6 , cragi-k1qdt5 , cragi-k1qkz7 , cragi-k1rgd2 , cragi-k1puh6 , cragi-k1raz4 , cragi-k1qqj4 , cragi-k1rbs1

Title : Reactivation and aging of acetylcholinesterase in human brain inhibited by phoxim and phoxim oxon in vitro - Li_2002_Zhonghua.Yu.Fang.Yi.Xue.Za.Zhi_36_311
Author(s) : Li J , Zhang Y , Du X , Sun M
Ref : Zhonghua Yu Fang Yi Xue Za Zhi , 36 :311 , 2002
Abstract : OBJECTIVE: Inhibition of acetylcholinesterase (AChE) in human brain caused by phoxim or phoxim oxon, their reactivation with oxime and aging of phosphorylated AChE were studied and compared in vitro. METHODS: Micro-colorispectrophotometric assay was used to determine the activity of AChE. RESULTS: The pI(50) of inhibition of AChE in human brain by phoxim and phoxim oxon were 5.39 and 5.77, respectively, whereas the pI(90) were 4.60 and 5.00, respectively. The reactivation rate of 0.1 mmol/L of pralidoxime (2-PAM), obidoxime (LH(6)), trimedoxime (TMB-4(Trimedoxime)) and pyramidoxime (HI-6) for phoxim-inhibited AChE in human brain was 65%, 97%, 91% and 56%, respectively, and their reactivation rate for phoxim oxon-inhibited AChE in human brain was 97%, 87%, 99% and 89%, respectively. The optimal reactivator for phoxim and phoxim oxon-inhibited AChEs was LH(6) and TMB-4(Trimedoxime), respectively. The half aging time of phoxim and phoxim oxon inhibited phosphorylated AChEs were 39 and 28 hours, respectively, and the 99% aging time were 256 and 186 hours, respectively.
CONCLUSIONS: LuH(6) or TMB-4(Trimedoxime) should be used at the earlier as possible after poisoning with phoxim and phoxim oxon, and the reactivator should be consecutively used for more than seven days, even after their acute symptoms have been well controlled.
ESTHER : Li_2002_Zhonghua.Yu.Fang.Yi.Xue.Za.Zhi_36_311
PubMedSearch : Li_2002_Zhonghua.Yu.Fang.Yi.Xue.Za.Zhi_36_311
PubMedID: 12411190

Title : A protein phosphatase methylesterase (PME-1) is one of several novel proteins stably associating with two inactive mutants of protein phosphatase 2A - Ogris_1999_J.Biol.Chem_274_14382
Author(s) : Ogris E , Du X , Nelson KC , Mak EK , Yu XX , Lane WS , Pallas DC
Ref : Journal of Biological Chemistry , 274 :14382 , 1999
Abstract : Carboxymethylation of proteins is a highly conserved means of regulation in eukaryotic cells. The protein phosphatase 2A (PP2A) catalytic (C) subunit is reversibly methylated at its carboxyl terminus by specific methyltransferase and methylesterase enzymes which have been purified, but not cloned. Carboxymethylation affects PP2A activity and varies during the cell cycle. Here, we report that substitution of glutamine for either of two putative active site histidines in the PP2A C subunit results in inactivation of PP2A and formation of stable complexes between PP2A and several cellular proteins. One of these cellular proteins, herein named protein phosphatase methylesterase-1 (PME-1), was purified and microsequenced, and its cDNA was cloned. PME-1 is conserved from yeast to human and contains a motif found in lipases having a catalytic triad-activated serine as their active site nucleophile. Bacterially expressed PME-1 demethylated PP2A C subunit in vitro, and okadaic acid, a known inhibitor of the PP2A methylesterase, inhibited this reaction. To our knowledge, PME-1 represents the first mammalian protein methylesterase to be cloned. Several lines of evidence indicate that, although there appears to be a role for C subunit carboxyl-terminal amino acids in PME-1 binding, amino acids other than those at the extreme carboxyl terminus of the C subunit also play an important role in PME-1 binding to a catalytically inactive mutant.
ESTHER : Ogris_1999_J.Biol.Chem_274_14382
PubMedSearch : Ogris_1999_J.Biol.Chem_274_14382
PubMedID: 10318862
Gene_locus related to this paper: human-PPME1 , mouse-PPME1