BACKGROUND: The biological degradation of plastics is a promising method to counter the increasing pollution of our planet with artificial polymers and to develop eco-friendly recycling strategies. Polyethylene terephthalate (PET) is a thermoplast industrially produced from fossil feedstocks since the 1940s, nowadays prevalently used in bottle packaging and textiles. Although established industrial processes for PET recycling exist, large amounts of PET still end up in the environment-a significant portion thereof in the world's oceans. In 2016, Ideonella sakaiensis, a bacterium possessing the ability to degrade PET and use the degradation products as a sole carbon source for growth, was isolated. I. sakaiensis expresses a key enzyme responsible for the breakdown of PET into monomers: PETase. This hydrolase might possess huge potential for the development of biological PET degradation and recycling processes as well as bioremediation approaches of environmental plastic waste. RESULTS: Using the photosynthetic microalga Phaeodactylum tricornutum as a chassis we generated a microbial cell factory capable of producing and secreting an engineered version of PETase into the surrounding culture medium. Initial degradation experiments using culture supernatant at 30 degrees C showed that PETase possessed activity against PET and the copolymer polyethylene terephthalate glycol (PETG) with an approximately 80-fold higher turnover of low crystallinity PETG compared to bottle PET. Moreover, we show that diatom produced PETase was active against industrially shredded PET in a saltwater-based environment even at mesophilic temperatures (21 degrees C). The products resulting from the degradation of the PET substrate were mainly terephthalic acid (TPA) and mono(2-hydroxyethyl) terephthalic acid (MHET) estimated to be formed in the micromolar range under the selected reaction conditions. CONCLUSION: We provide a promising and eco-friendly solution for biological decomposition of PET waste in a saltwater-based environment by using a eukaryotic microalga instead of a bacterium as a model system. Our results show that via synthetic biology the diatom P. tricornutum indeed could be converted into a valuable chassis for biological PET degradation. Overall, this proof of principle study demonstrates the potential of the diatom system for future biotechnological applications in biological PET degradation especially for bioremediation approaches of PET polluted seawater.
Lasso peptides are natural products that assume a unique lariat knot topology. Lasso peptide isopeptidases (IsoPs) eliminate this topology through isopeptide bond cleavage. To probe how these enzymes distinguish between substrates and hydrolyze only isopeptide bonds, we examined the structure and mechanism of a previously uncharacterized IsoP from the proteobacterium Sphingopyxis alaskensis RB2256 (SpI-IsoP). We demonstrate that SpI-IsoP efficiently and specifically linearizes the lasso peptide sphingopyxin I (SpI) and variants thereof. We also present crystal structures of SpI and SpI-IsoP, revealing a threaded topology for the former and a prolyl oligopeptidase (POP)-like fold for the latter. Subsequent structure-guided mutational analysis allowed us to propose roles for active-site residues. Our study sheds light on lasso peptide catabolism and expands the engineering potential of these fascinating molecules.
Upon iron limitation, Bacillus subtilis secretes the catecholic trilactone (2,3-dihydroxybenzoate-glycine-threonine)3 siderophore bacillibactin (BB) for ferric iron scavenging. Here, we show that ferri-BB uptake is mediated by the FeuABC transporter and that YuiI, a novel trilactone hydrolase, catalyses ferri-BB hydrolysis leading to cytosolic iron release. Among several Fur-regulated ABC transport mutants, only DeltafeuABC exhibited impaired growth during iron starvation. Quantification of intra- and extracellular (ferri)-BB in iron-depleted DeltafeuABC cultures revealed a fourfold increase of the extracellular siderophore concentration, confirming a blocked ferri-BB uptake in the absence of FeuABC. Ferri-BB was found to bind selectively to the periplasmic binding protein FeuA (Kd = 57 +/- 1 nM), proving high-affinity transport of the iron-charged siderophore. During iron starvation, a DeltayuiI mutant displayed impaired growth and strong intracellular (30-fold) and extracellular (6.5-fold) (ferri)-BB accumulation. Kinetic studies in vitro revealed that YuiI hydrolyses both BB and ferri-BB. While BB hydrolysis led to strong accumulation of the tri- and dimeric reaction intermediates, ferri-BB hydrolysis yielded exclusively the monomeric reaction product and occurred with a 25-fold higher catalytic efficiency than BB single hydrolysis. Thus, ferri-BB was the preferred substrate of the YuiI esterase whose gene locus was designated besA.
Macrocyclization of synthetic peptides by thioesterase (TE) domains excised from nonribosomal peptide synthetases (NRPS) has been limited to peptides that contain TE-specific recognition elements. To alter substrate specificity of these enzymes by evolution efforts, macrocyclization has to be detected under high-throughput conditions. Here we describe a method to selectively detect cyclic peptides by fluorescence resonance energy transfer (FRET). Using this method, picomolar detection limits were easily realized, providing novel entry for kinetic studies of catalyzed macrocyclization. Application of this method also provides an ideal tool to track TE-mediated peptide cyclization in real time. The general utility of FRET-assisted detection of cyclopeptides was demonstrated for two cyclases, namely tyrocidine (Tyc) TE and calcium-dependent antibiotic (CDA) TE. For the latter cyclase, this approach was combined with site-directed affinity labeling, opening the possibility for high-throughput enzymatic screening.
        
Title: Synthesis of linear gramicidin requires the cooperation of two independent reductases Schracke N, Linne U, Mahlert C, Marahiel MA Ref: Biochemistry, 44:8507, 2005 : PubMed
The linear pentadecapeptide gramicidin has been reported to be assembled by four large multimodular nonribosomal peptide synthetases (NRPSs), LgrABCD, that comprise 16 modules. During biosynthesis, the N-formylated 16mer peptide is bound to the peptidyl carrier protein (PCP) of the terminal module via a thioester bond to the carboxyl group of the last amino acid glycine(16). In a first reaction the peptide is released from the protein template in an NAD(P)H-dependent reduction step catalyzed by the adjacent reductase forming an aldehyde intermediate. Here we present the biochemical proof that this aldehyde intermediate is further reduced by an aldoreductase, LgrE, in an NADPH-dependent manner to form the final product gramicidin A, N-formyl-pentadecapeptide-ethanolamine. To determine the potential use of the two reductases in the construction of hybrid NRPSs, we have tested their ability to accept a variety of different substrates in vitro. The results obtained give way to a broad spectrum of possible use.
        
Title: The linear pentadecapeptide gramicidin is assembled by four multimodular nonribosomal peptide synthetases that comprise 16 modules with 56 catalytic domains Kessler N, Schuhmann H, Morneweg S, Linne U, Marahiel MA Ref: Journal of Biological Chemistry, 279:7413, 2004 : PubMed
Linear gramicidin is a membrane channel forming pentadecapeptide that is produced via the nonribosomal pathway. It consists of 15 hydrophobic amino acids with alternating l- and d-configuration forming a beta-helix-like structure. It has an N-formylated valine and a C-terminal ethanolamine. Here we report cloning and sequencing of the entire biosynthetic gene cluster as well as initial biochemical analysis of a new reductase domain. The biosynthetic gene cluster was identified on two nonoverlapping fosmids and a 13-kilobase pair (kbp) interbridge fragment covering a region of 74 kbp. Four very large open reading frames, lgrA, lgrB, lgrC, and lgrD with 6.8, 15.5, 23.3, and 15.3 kbp, were identified and shown to encode nonribosomal peptide synthetases with two, four, six, and four modules, respectively. Within the 16 modules identified, seven epimerization domains in alternating positions were detected as well as a putative formylation domain fused to the first module LgrA and a putative reductase domain attached to the C-terminal module of LgrD. Analysis of the substrate specificity by phylogenetic studies using the residues of the substrate-binding pockets of all 16 adenylation domains revealed a good agreement of the substrate amino acids predicted with the sequence of linear gramicidin. Additional biochemical analysis of the three adenylation domains of modules 1, 2, and 3 confirmed the colinearity of this nonribosomal peptide synthetase assembly line. Module 16 was predicted to activate glycine, which would then, being the C-terminal residue of the peptide chain, be reduced by the adjacent reductase domain to give ethanolamine, thereby releasing the final product N-formyl-pentadecapeptide-ethanolamine. However, initial biochemical analysis of this reductase showed only a one-step reduction yielding the corresponding aldehyde in vitro.
        
Title: Mutational analysis of a type II thioesterase associated with nonribosomal peptide synthesis Linne U, Schwarzer D, Schroeder GN, Marahiel MA Ref: European Journal of Biochemistry, 271:1536, 2004 : PubMed
Recent studies on type II thioesterases (TEIIs) involved in microbial secondary metabolism described a role for these enzymes in the removal of short acyl-S- phosphopantetheine intermediates from misprimed holo-(acyl carrier proteins) and holo-(peptidyl carrier proteins) of polyketide synthases and nonribosomal peptide synthetases. Because of the absence of structural information on this class of enzymes, we performed a mutational analysis on a prototype TEII essential for efficient production of the lipopeptide antibiotic surfactin (TEII(srf)), which led to identification of catalytic and structural residues. On the basis of sequence alignment of 16 TEIIs, 10 single and one double mutant of highly conserved residues of TEII(srf) were constructed and biochemically investigated. We clearly identified a catalytic triad consisting of Ser86, Asp190 and His216, suggesting that TEII(srf) belongs to the alpha/beta-hydrolase superfamily. Exchange of these residues with residues with aliphatic side chains abolished enzyme activity, whereas replacement of the active-site Ser86 with cysteine produced an enzyme with marginally reduced activity. In contrast, exchange of the second strictly conserved asparagine (Asp163) with Ala resulted in an active but unstable enzyme, excluding a role for this residue in catalysis and suggesting a structural function. The results define three catalytic and at least one structural residue in a nonribosomal peptide synthetase TEII.