Sequence similarities between hormone-sensitive lipase and prokaryotic enzymes was dicovered by Langin and Holm and Hemila et al.. The family Corresponds to the Pfam entry Abhydrolase_3. For bacterial enzymes this family correspond to family IV of the classification of Arpigny et al 1999
6 moreTitle: An overview of mammalian and microbial hormone-sensitive lipases (lipolytic family IV): biochemical properties and industrial applications Nagaroor V, Gummadi SN Ref: Biotechnol Genet Eng Rev, :1, 2022 : PubMed
In mammals, hormone-sensitive lipase (EC 3.1.1.79) is an intracellular lipase that significantly regulates lipid metabolism. Mammalian HSL is more active towards diacylglycerol but lacks a lid covering the active site. Dyslipidemia, hepatic steatosis, cancer, and cancer-associated cachexia are symptoms of HSL pathophysiology. Certain microbial proteins show a sequence homologous to the catalytic domain of mammalian HSL, hence called microbial HSL. They possess a funnel-shaped substrate-binding pocket and restricted length of acyl chain esters, thus known as esterases. These enzymes have broad substrate specificities and are capable of stereo, regio, and enantioselective, making them attractive biocatalysts in a wide range of industrial applications in the production of flavors, pharmaceuticals, biosensors, and fine chemicals. This review will provide insight into mammalian and microbial HSLs, their sources, structural features related to substrate specificity, thermal stability, and their applications.
Hormone-sensitive lipase (HSL) was initially characterized as the hormonally regulated neutral lipase activity responsible for the breakdown of triacylglycerols into fatty acids in adipose tissue. This review aims at providing up-to-date information on structural properties, regulation of expression, activity and function as well as therapeutic potential. The lipase is expressed as different isoforms produced from tissue-specific alternative promoters. All isoforms are composed of an N-terminal domain and a C-terminal catalytic domain within which a regulatory domain containing the phosphorylation sites is embedded. Some isoforms possess additional N-terminal regions. The catalytic domain shares similarities with bacteria, fungus and plant proteins but not with other mammalian lipases. HSL singularity is provided by regulatory and N-terminal domains sharing no homology with other proteins. HSL has a large substrate specificity compared to other neutral lipases. It hydrolyzes acylglycerols, cholesteryl and retinyl esters among other substrates. A novel role of HSL, independent of its enzymatic function, has recently been described in adipocytes. Clinical studies revealed dysregulations of HSL expression and activity in disorders, such as lipodystrophy, obesity, type 2 diabetes and cancer-associated cachexia. Development of specific inhibitors positions HSL as a pharmacological target for the treatment of metabolic complications.
        
Title: Hormone-sensitive lipase is closely related to several bacterial proteins, and distantly related to acetylcholinesterase and lipoprotein lipase: identification of a superfamily of esterases and lipases Hemila H, Koivula TT, Palva I Ref: Biochimica & Biophysica Acta, 1210:249, 1994 : PubMed
We have sequenced a gene from Bacillus acidocaldarius which encodes an open reading frame (ORF3) of 310 amino acids. The ORF3 was found to be related to the mammalian hormone-sensitive lipase (HSL). Searching the protein data base revealed five other bacterial proteins related to the HSL. Upon further sequence comparisons this HSL-group was found to be related to the family of carboxylesterases, and to a family of lipases (lipoprotein, hepatic and pancreatic lipases). The evolutionary relationship of these serine-dependent hydrolytic enzymes has not been studied previously, and it has not been known that these proteins belong to the same superfamily. Finally, the alignment of the HSL with the bacterial proteins allowed us to infer the location of the hormone-sensitive regulatory domain of the HSL-protein.
        
6 lessTitle: An overview of mammalian and microbial hormone-sensitive lipases (lipolytic family IV): biochemical properties and industrial applications Nagaroor V, Gummadi SN Ref: Biotechnol Genet Eng Rev, :1, 2022 : PubMed
In mammals, hormone-sensitive lipase (EC 3.1.1.79) is an intracellular lipase that significantly regulates lipid metabolism. Mammalian HSL is more active towards diacylglycerol but lacks a lid covering the active site. Dyslipidemia, hepatic steatosis, cancer, and cancer-associated cachexia are symptoms of HSL pathophysiology. Certain microbial proteins show a sequence homologous to the catalytic domain of mammalian HSL, hence called microbial HSL. They possess a funnel-shaped substrate-binding pocket and restricted length of acyl chain esters, thus known as esterases. These enzymes have broad substrate specificities and are capable of stereo, regio, and enantioselective, making them attractive biocatalysts in a wide range of industrial applications in the production of flavors, pharmaceuticals, biosensors, and fine chemicals. This review will provide insight into mammalian and microbial HSLs, their sources, structural features related to substrate specificity, thermal stability, and their applications.
Hormone-sensitive lipase (HSL) was initially characterized as the hormonally regulated neutral lipase activity responsible for the breakdown of triacylglycerols into fatty acids in adipose tissue. This review aims at providing up-to-date information on structural properties, regulation of expression, activity and function as well as therapeutic potential. The lipase is expressed as different isoforms produced from tissue-specific alternative promoters. All isoforms are composed of an N-terminal domain and a C-terminal catalytic domain within which a regulatory domain containing the phosphorylation sites is embedded. Some isoforms possess additional N-terminal regions. The catalytic domain shares similarities with bacteria, fungus and plant proteins but not with other mammalian lipases. HSL singularity is provided by regulatory and N-terminal domains sharing no homology with other proteins. HSL has a large substrate specificity compared to other neutral lipases. It hydrolyzes acylglycerols, cholesteryl and retinyl esters among other substrates. A novel role of HSL, independent of its enzymatic function, has recently been described in adipocytes. Clinical studies revealed dysregulations of HSL expression and activity in disorders, such as lipodystrophy, obesity, type 2 diabetes and cancer-associated cachexia. Development of specific inhibitors positions HSL as a pharmacological target for the treatment of metabolic complications.
        
Title: Bacterial Hormone-Sensitive Lipases (bHSLs): Emerging Enzymes for Biotechnological Applications Kim TD Ref: J Microbiol Biotechnol, 27:1907, 2017 : PubMed
Lipases are important enzymes with biotechnological applications in dairy, detergent, food, fine chemicals, and pharmaceutical industries. Specifically, hormone-sensitive lipase (HSL) is an intracellular lipase that can be stimulated by several hormones, such as catecholamine, glucagon, and adrenocorticotropic hormone. Bacterial hormone-sensitive lipases (bHSLs), which are homologous to the C-terminal domain of HSL, have alpha/beta-hydrolase fold with a catalytic triad composed of His, Asp, and Ser. These bHSLs could be used for a wide variety of industrial applications because of their high activity, broad substrate specificity, and remarkable stability. In this review, the relationships among HSLs, the microbiological origins, the crystal structures, and the biotechnological properties of bHSLs are summarized.
Fatty liver is a major health problem worldwide. People with hereditary deficiency of hormone-sensitive lipase (HSL) are reported to develop fatty liver. In this study, systemic and tissue-specific HSL-deficient mice were used as models to explore the underlying mechanism of this association. We found that systemic HSL deficient mice developed fatty liver in an age-dependent fashion between 3 and 8 months of age. To further explore the mechanism of fatty liver in HSL deficiency, liver-specific HSL knockout mice were created. Surprisingly, liver HSL deficiency did not influence liver fat content, suggesting that fatty liver in HSL deficiency is not liver autonomous. Given the importance of adipose tissue in systemic triglyceride metabolism, we created adipose-specific HSL knockout mice and found that adipose HSL deficiency, to a similar extent as systemic HSL deficiency, causes age-dependent fatty liver in mice. Mechanistic study revealed that deficiency of HSL in adipose tissue caused inflammatory macrophage infiltrates, progressive lipodystrophy, abnormal adipokine secretion and systemic insulin resistance. These changes in adipose tissue were associated with a constellation of changes in liver: low levels of fatty acid oxidation, of very low density lipoprotein secretion and of triglyceride hydrolase activity, each favoring the development of hepatic steatosis. In conclusion, HSL-deficient mice revealed a complex interorgan interaction between adipose tissue and liver: the role of HSL in the liver is minimal but adipose tissue deficiency of HSL can cause age-dependent hepatic steatosis. Adipose tissue is a potential target for treating the hepatic steatosis of HSL deficiency.
        
Title: Molecular cloning and characterization of a thermostable carboxylesterase from an archaeon, Sulfolobus shibatae DSM5389: non-linear kinetic behavior of a hormone-sensitive lipase family enzyme Ejima K, Liu J, Oshima Y, Hirooka K, Shimanuki S, Yokota Y, Hemmi H, Nakayama T, Nishino T Ref: J Biosci Bioeng, 98:445, 2004 : PubMed
A gene coding for an esterase (SshEstI, 915 bp in length) of the thermoacidophilic archaeon Sulfolobus shibatae DSM5389 was cloned, sequenced, and overexpressed in Escherichia coli JM109 cells as a soluble, catalytically active protein. The deduced amino acid sequence of SshEstI was consistent with a protein containing 305 amino acid residues with a molecular mass of 33 kDa. Sequence comparison studies indicated that SshEstI could be a member of the hormone-sensitive lipase family, in that it had the highest sequence similarity to esterases from Sulfolobus solfataricus (90% identity) and Archaeoglobus fulgidus (42%) and a lipase from Pseudomonas sp. B11-1 (38%). The recombinant enzyme was highly thermostable and retained more than 70% of its initial activity after incubation at 90 degrees C and pH 7.0 for 30 min. The recombinant enzyme catalyzed the hydrolysis of p-nitrophenyl (p-NP) esters with C2-C16 acyl chains but not the hydrolysis of triacylglycerides such as tributyrin and triolein. The enzymatic hydrolysis of p-NP acetate proceeded in a linear manner with time, whereas that of p-NP esters with acyl chains of C5 or longer showed a biphasic profile, where a rapid release of p-nitrophenol ( approximately 3 min) was followed by a slow, sustained release. These non-linear kinetics may be explained in terms of a very slow, presteady-state burst phenomenon of p-nitrophenol release or a hysteretic behavior of SshEstI with these substrates.
        
Title: Structure-function relationships of hormone-sensitive lipase Osterlund T Ref: European Journal of Biochemistry, 268:1899, 2001 : PubMed
Research into the structure-function relationships of lipases and esterases has increased significantly during the past decade. Of particular importance has been the deduction of several crystal structures, providing a new basis for understanding these enzymes. The generated insights have, together with cloning and expression, aided studies on structure-function relationships of hormone-sensitive lipase (HSL). Novel phosphorylation sites have been identified in HSL, which are probably important for activation of HSL and lipolysis. Functional and structural analyses have revealed features in HSL common to lipases and esterases. In particular, the catalytic core with a catalytic triad has been unveiled. Furthermore, the investigations have given clear suggestions with regard to the identity of functional and structural domains of HSL. In the present paper, these studies on HSL structure-function relationships and short-term regulation are reviewed, and the results presented in relation to other discoveries in regulated lipolysis.
Hormone-sensitive lipase, the rate-limiting enzyme of intracellular TG hydrolysis, is a major determinant of fatty acid mobilization in adipose tissue as well as other tissues. It plays a pivotal role in lipid metabolism, overall energy homeostasis, and, presumably, cellular events involving fatty acid signaling. Detailed knowledge about its structure and regulation may provide information regarding the pathogenesis of such human diseases as obesity and diabetes and may generate concepts for new treatments of these diseases. The current review summarizes the recent advances with regard to hormone-sensitive lipase structure and molecular mechanisms involved in regulating its activity and lipolysis in general. A summary of the current knowledge regarding regulation of expression, potential involvement in lipid disorders, and role in tissues other than adipose tissue is also provided.
        
Title: Hormone-sensitive lipase is closely related to several bacterial proteins, and distantly related to acetylcholinesterase and lipoprotein lipase: identification of a superfamily of esterases and lipases Hemila H, Koivula TT, Palva I Ref: Biochimica & Biophysica Acta, 1210:249, 1994 : PubMed
We have sequenced a gene from Bacillus acidocaldarius which encodes an open reading frame (ORF3) of 310 amino acids. The ORF3 was found to be related to the mammalian hormone-sensitive lipase (HSL). Searching the protein data base revealed five other bacterial proteins related to the HSL. Upon further sequence comparisons this HSL-group was found to be related to the family of carboxylesterases, and to a family of lipases (lipoprotein, hepatic and pancreatic lipases). The evolutionary relationship of these serine-dependent hydrolytic enzymes has not been studied previously, and it has not been known that these proteins belong to the same superfamily. Finally, the alignment of the HSL with the bacterial proteins allowed us to infer the location of the hormone-sensitive regulatory domain of the HSL-protein.
        
Title: Sequence similarities between hormone-sensitive lipase and five prokaryotic enzymes Langin D, Holm C Ref: Trends in Biochemical Sciences, 18:466, 1993 : PubMed
Structure of S192A-ester-hydrolase EH3 from the metagenome of marine sediments at Milazzo Harbor (Sicily, Italy) complexed with methyl (2S)-2-Phenylpropanoate
Structure of S192A-ester-hydrolase EH3 from the metagenome of marine sediments at Milazzo Harbor (Sicily, Italy) complexed with methyl (2R)-2-Phenylpropanoate
Structure of ester-hydrolase EH3 from the metagenome of marine sediments at Milazzo harbor (Sicily, Italy) complexed with a derivative of butyl 4-nitrophenyl hexyl phosphonate
Structure of ester-hydrolase EH3 from the metagenome of marine sediments at Milazzo harbor (Sicily, Italy) complexed with a derivative of bipyridine phosphnate