Other strains: Geobacillus thermodenitrificans (strain NG80-2), Geobacillus sp. G11MC16 This esterase belongs to family_XIII of the Arpigny and Jaeger classification. Charbonneau et al. showed that this family is composed of two sub families with different set of salt-bridges important for thermostability Charbonneau et al. (due to simultaneous publication of new families this family was numbered XV but really is a subset of familly XIII)
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Terrabacteria group: NE > Firmicutes: NE > Bacilli: NE > Bacillales: NE > Bacillaceae: NE > Geobacillus: NE > Geobacillus thermodenitrificans: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Geobacillus thermodenitrificans NG80-2: N, E.
Geobacillus sp. G11MC16: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MKERYPVLPGAEPFYAENGPVGVLLSHGFTGTPYSMRPLAEAYAQAGYTV CLPRLKGHGTHYEDMERTTFHDWIASVEEGYEWLKQRCQTIFVTGLSMGG TLTLYLAEQHPEICGIVPINAAVDIPAIAAGMTGGGEVPRYLDSIGSDLK NPDVKELSYEKTPTASLLQLAQLMERVKEELGRITCPALIFVSDEDHVVP PGNADIIFQGVQSSEKEIVRLHNSYHVATLDYDQQTIIERSLQFFAKHA
The present study investigated high-yield monoacylglycerol (MAG) synthesis by bacterial lipolytic enzymes in a solvent-free two-phase system. Esterification by monoacylglycerol lipase from Bacillus sp. H-257 (H257) required a high glycerol/fatty acid molar ratio for efficient MAG synthesis. Screening of H257 homologues revealed that carboxylesterase derived from Geobacillus thermodenitrificans, EstGtA2, exhibited a higher esterification rate than H257. Moreover, neutralizing the pH of the acidic reaction solution by adding potassium hydroxide (KOH) solution further increased the esterification rate. The esterification rate by EstGtA2 reached 75% under conditions of equivalent molar amounts of glycerol and fatty acid, and the MAG rate (MAG/total glyceride) was 97%. The neutralized pH of the reaction solution likely affected the thermal stability of EstGtA2 during the esterification reaction. Screening for thermal-tolerant variants revealed that the EstGtA2(S26I) variant was stable at 75 degreesC for 30 min, a condition under which wild-type EstGtA2 was completely inactivated. The esterification rate by the EstGtA2(S26I) variant reached 90%, and the MAG rate was 96%. The addition of alkali and the use of a thermal-tolerant enzyme were important for obtaining high-yield MAG in a solvent-free two-phase system utilizing EstGtA2.
        
Title: Role of key salt bridges in thermostability of G. thermodenitrificans EstGtA2: distinctive patterns within the new bacterial lipolytic enzyme family XV Charbonneau DM, Beauregard M Ref: PLoS ONE, 8:e76675, 2013 : PubMed
Bacterial lipolytic enzymes were originally classified into eight different families defined by Arpigny and Jaeger (families I-VIII). Recently, the discovery of new lipolytic enzymes allowed for extending the original classification to fourteen families (I-XIV). We previously reported that G. thermodenitrificans EstGtA2 (access no. AEN92268) belonged to a novel group of bacterial lipolytic enzymes. Here we propose a 15(th) family (family XV) and suggest criteria for the assignation of protein sequences to the N' subfamily. Five selected salt bridges, hallmarks of the N' subfamily (E3/R54, E12/R37, E66/R140, D124/K178 and D205/R220) were disrupted in EstGtA2 using a combinatorial alanine-scanning approach. A set of 14 (R/K-->A) mutants was produced, including five single, three double, three triple and three quadruple mutants. Despite a high tolerance to non-conservative mutations for folding, all the alanine substitutions were destabilizing (decreasing T m by 5 to 14 degrees C). A particular combination of four substitutions exceeded this tolerance and prevents the correct folding of EstGtA2, leading to enzyme inactivation. Although other mutants remain active at low temperatures, the accumulation of more than two mutations had a dramatic impact on EstGtA2 activity at high temperatures suggesting an important role of these conserved salt bridge-forming residues in thermostability of lipolytic enzymes from the N' subfamily. We also identified a particular interloop salt bridge in EstGtA2 (D194/H222), located at position i -2 and i -4 residues from the catalytic Asp and His respectively which is conserved in other related bacterial lipolytic enzymes (families IV and XIII) with high tolerance to mutations and charge reversal. We investigated the role of residue identity at position 222 in controlling stability-pH dependence in EstGtA2. The introduction of a His to Arg mutation led to increase thermostability under alkaline pH. Our results suggest primary targets for optimization of EstGtA2 for specific biotechnological purposes.
The complete genome sequence of Geobacillus thermodenitrificans NG80-2, a thermophilic bacillus isolated from a deep oil reservoir in Northern China, consists of a 3,550,319-bp chromosome and a 57,693-bp plasmid. The genome reveals that NG80-2 is well equipped for adaptation into a wide variety of environmental niches, including oil reservoirs, by possessing genes for utilization of a broad range of energy sources, genes encoding various transporters for efficient nutrient uptake and detoxification, and genes for a flexible respiration system including an aerobic branch comprising five terminal oxidases and an anaerobic branch comprising a complete denitrification pathway for quick response to dissolved oxygen fluctuation. The identification of a nitrous oxide reductase gene has not been previously described in Gram-positive bacteria. The proteome further reveals the presence of a long-chain alkane degradation pathway; and the function of the key enzyme in the pathway, the long-chain alkane monooxygenase LadA, is confirmed by in vivo and in vitro experiments. The thermophilic soluble monomeric LadA is an ideal candidate for treatment of environmental oil pollutions and biosynthesis of complex molecules.
The present study investigated high-yield monoacylglycerol (MAG) synthesis by bacterial lipolytic enzymes in a solvent-free two-phase system. Esterification by monoacylglycerol lipase from Bacillus sp. H-257 (H257) required a high glycerol/fatty acid molar ratio for efficient MAG synthesis. Screening of H257 homologues revealed that carboxylesterase derived from Geobacillus thermodenitrificans, EstGtA2, exhibited a higher esterification rate than H257. Moreover, neutralizing the pH of the acidic reaction solution by adding potassium hydroxide (KOH) solution further increased the esterification rate. The esterification rate by EstGtA2 reached 75% under conditions of equivalent molar amounts of glycerol and fatty acid, and the MAG rate (MAG/total glyceride) was 97%. The neutralized pH of the reaction solution likely affected the thermal stability of EstGtA2 during the esterification reaction. Screening for thermal-tolerant variants revealed that the EstGtA2(S26I) variant was stable at 75 degreesC for 30 min, a condition under which wild-type EstGtA2 was completely inactivated. The esterification rate by the EstGtA2(S26I) variant reached 90%, and the MAG rate was 96%. The addition of alkali and the use of a thermal-tolerant enzyme were important for obtaining high-yield MAG in a solvent-free two-phase system utilizing EstGtA2.
        
Title: Role of key salt bridges in thermostability of G. thermodenitrificans EstGtA2: distinctive patterns within the new bacterial lipolytic enzyme family XV Charbonneau DM, Beauregard M Ref: PLoS ONE, 8:e76675, 2013 : PubMed
Bacterial lipolytic enzymes were originally classified into eight different families defined by Arpigny and Jaeger (families I-VIII). Recently, the discovery of new lipolytic enzymes allowed for extending the original classification to fourteen families (I-XIV). We previously reported that G. thermodenitrificans EstGtA2 (access no. AEN92268) belonged to a novel group of bacterial lipolytic enzymes. Here we propose a 15(th) family (family XV) and suggest criteria for the assignation of protein sequences to the N' subfamily. Five selected salt bridges, hallmarks of the N' subfamily (E3/R54, E12/R37, E66/R140, D124/K178 and D205/R220) were disrupted in EstGtA2 using a combinatorial alanine-scanning approach. A set of 14 (R/K-->A) mutants was produced, including five single, three double, three triple and three quadruple mutants. Despite a high tolerance to non-conservative mutations for folding, all the alanine substitutions were destabilizing (decreasing T m by 5 to 14 degrees C). A particular combination of four substitutions exceeded this tolerance and prevents the correct folding of EstGtA2, leading to enzyme inactivation. Although other mutants remain active at low temperatures, the accumulation of more than two mutations had a dramatic impact on EstGtA2 activity at high temperatures suggesting an important role of these conserved salt bridge-forming residues in thermostability of lipolytic enzymes from the N' subfamily. We also identified a particular interloop salt bridge in EstGtA2 (D194/H222), located at position i -2 and i -4 residues from the catalytic Asp and His respectively which is conserved in other related bacterial lipolytic enzymes (families IV and XIII) with high tolerance to mutations and charge reversal. We investigated the role of residue identity at position 222 in controlling stability-pH dependence in EstGtA2. The introduction of a His to Arg mutation led to increase thermostability under alkaline pH. Our results suggest primary targets for optimization of EstGtA2 for specific biotechnological purposes.
        
Title: N-terminal purification tag alters thermal stability of the carboxylesterase EstGtA2 from G. thermodenitrificans by impairing reversibility of thermal unfolding Charbonneau DM, Meddeb-Mouelhi F, Beauregard M Ref: Protein Pept Lett, 19:264, 2012 : PubMed
The novel thermostable carboxylesterase EstGtA2 from G. thermodenitrificans (accession no. AEN92268) was functionally expressed and purified using an N-terminal fusion tag peptide. We recently reported general properties of the recombinant enzyme. Here we report preliminary data on thermal stability of EstGtA2 and of its tagged form. Conformational stability was investigated using circular dichroism and correlated with residual activity measurements using a colorimetric assay. The tag peptide had no considerable impact on the apparent melting temperature: T(m) value = 64.8 degrees C (tagged) and 65.7 degrees C (cleaved) at pH 8. After thermal unfolding, the tag-free enzyme rapidly recovered initial activity at 25 degrees C (1.2 Umg(-1)), which was corroborated by substantial refolding (83%) as determined by far-UV CD transitions. However, after thermal unfolding, the purification tag drastically decreased specific activity at 25 degrees C (0.07 Umg(-1)). This was corroborated by the absence of refolding transition. Although the purification tag has no undesirable impact on activity before thermal unfolding as well as on Tm, it drastically hinders EstGtA2 refolding resulting in a major loss of thermal stability.
        
Title: A novel thermostable carboxylesterase from Geobacillus thermodenitrificans: evidence for a new carboxylesterase family Charbonneau DM, Meddeb-Mouelhi F, Beauregard M Ref: J Biochem, 148:299, 2010 : PubMed
A novel gene encoding an esterase from Geobacillus thermodenitrificans strain CMB-A2 was cloned, sequenced and functionally expressed in Escherichia coli M15. Sequence analysis revealed an open reading frame of 747 bp corresponding to a polypeptide of 249 amino acid residues (named EstGtA2). After purification, a specific activity of 2.58 U mg(-1) was detected using p-NP caprylate (C8) at 50 degrees C and pH 8.0 (optimal conditions). The enzyme catalyses the hydrolysis of triglycerides (tributyrin) and a variety of p-nitrophenyl esters with different fatty acyl chain length (C4-C16). The enzyme has potential for various industrial applications since it is characterized by its activity under a wide range of pH, from 25 to 65 degrees C. Using Geobacillus stearothermophilus Est30 esterase structure as template, a model of EstGtA2 was built using ESyPred3D. Analysis of this structural model allowed identifying putative sequence features that control EstGtA2 enzymatic properties. Based on sequence properties, multiple sequence comparisons and phylogenetic analyses, this enzyme appears to belong to a new family of carboxylesterases.
The complete genome sequence of Geobacillus thermodenitrificans NG80-2, a thermophilic bacillus isolated from a deep oil reservoir in Northern China, consists of a 3,550,319-bp chromosome and a 57,693-bp plasmid. The genome reveals that NG80-2 is well equipped for adaptation into a wide variety of environmental niches, including oil reservoirs, by possessing genes for utilization of a broad range of energy sources, genes encoding various transporters for efficient nutrient uptake and detoxification, and genes for a flexible respiration system including an aerobic branch comprising five terminal oxidases and an anaerobic branch comprising a complete denitrification pathway for quick response to dissolved oxygen fluctuation. The identification of a nitrous oxide reductase gene has not been previously described in Gram-positive bacteria. The proteome further reveals the presence of a long-chain alkane degradation pathway; and the function of the key enzyme in the pathway, the long-chain alkane monooxygenase LadA, is confirmed by in vivo and in vitro experiments. The thermophilic soluble monomeric LadA is an ideal candidate for treatment of environmental oil pollutions and biosynthesis of complex molecules.