Bednar_2015_PLoS.Comput.Biol_11_e1004556

Reference

Title : FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants - Bednar_2015_PLoS.Comput.Biol_11_e1004556
Author(s) : Bednar D , Beerens K , Sebestova E , Bendl J , Khare S , Chaloupkova R , Prokop Z , Brezovsky J , Baker D , Damborsky J
Ref : PLoS Comput Biol , 11 :e1004556 , 2015
Abstract :

There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and gamma-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (DeltaTm = 24 degrees C and 21 degrees C) by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.

PubMedSearch : Bednar_2015_PLoS.Comput.Biol_11_e1004556
PubMedID: 26529612
Gene_locus related to this paper: rhoso-halo1

Related information

Gene_locus rhoso-halo1

Citations formats

Bednar D, Beerens K, Sebestova E, Bendl J, Khare S, Chaloupkova R, Prokop Z, Brezovsky J, Baker D, Damborsky J (2015)
FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants
PLoS Comput Biol 11 :e1004556

Bednar D, Beerens K, Sebestova E, Bendl J, Khare S, Chaloupkova R, Prokop Z, Brezovsky J, Baker D, Damborsky J (2015)
PLoS Comput Biol 11 :e1004556