Wu_2024_Molecules_29_

Reference

Title : Design, Synthesis, and Biological Evaluation of Novel Tetrahydroacridin Hybrids with Sulfur-Inserted Linkers as Potential Multitarget Agents for Alzheimer's Disease - Wu_2024_Molecules_29_
Author(s) : Wu X , Ze X , Qin S , Zhang B , Li X , Gong Q , Zhang H , Zhu Z , Xu J
Ref : Molecules , 29 : , 2024
Abstract :

Alzheimer's disease (AD) is a complex neurodegenerative disease that can lead to the loss of cognitive function. The progression of AD is regulated by multiple signaling pathways and their associated targets. Therefore, multitarget strategies theoretically have greater potential for treating AD. In this work, a series of new hybrids were designed and synthesized by the hybridization of tacrine (4, AChE: IC(50) = 0.223 microM) with pyrimidone compound 5 (GSK-3beta: IC(50) = 3 microM) using the cysteamine or cystamine group as the connector. The biological evaluation results demonstrated that most of the compounds exhibited moderate to good inhibitory activities against acetylcholinesterase (AChE) and glycogen synthase kinase 3beta (GSK-3beta). The optimal compound 18a possessed potent dual AChE/GSK-3beta inhibition (AChE: IC(50) = 0.047 +/- 0.002 microM, GSK-3beta: IC(50) = 0.930 +/- 0.080 microM). Further molecular docking and enzymatic kinetic studies revealed that this compound could occupy both the catalytic anionic site and the peripheral anionic site of AChE. The results also showed a lack of toxicity to SH-SY5Y neuroblastoma cells at concentrations of up to 25 microM. Collectively, this work explored the structure-activity relationships of novel tetrahydroacridin hybrids with sulfur-inserted linkers, providing a reference for the further research and development of new multitarget anti-AD drugs.

PubMedSearch : Wu_2024_Molecules_29_
PubMedID: 38675602

Related information

Citations formats

Wu X, Ze X, Qin S, Zhang B, Li X, Gong Q, Zhang H, Zhu Z, Xu J (2024)
Design, Synthesis, and Biological Evaluation of Novel Tetrahydroacridin Hybrids with Sulfur-Inserted Linkers as Potential Multitarget Agents for Alzheimer's Disease
Molecules 29 :

Wu X, Ze X, Qin S, Zhang B, Li X, Gong Q, Zhang H, Zhu Z, Xu J (2024)
Molecules 29 :