Gong Q

References (15)

Title : Design, Synthesis, and Biological Evaluation of Novel Tetrahydroacridin Hybrids with Sulfur-Inserted Linkers as Potential Multitarget Agents for Alzheimer's Disease - Wu_2024_Molecules_29_
Author(s) : Wu X , Ze X , Qin S , Zhang B , Li X , Gong Q , Zhang H , Zhu Z , Xu J
Ref : Molecules , 29 : , 2024
Abstract : Alzheimer's disease (AD) is a complex neurodegenerative disease that can lead to the loss of cognitive function. The progression of AD is regulated by multiple signaling pathways and their associated targets. Therefore, multitarget strategies theoretically have greater potential for treating AD. In this work, a series of new hybrids were designed and synthesized by the hybridization of tacrine (4, AChE: IC(50) = 0.223 microM) with pyrimidone compound 5 (GSK-3beta: IC(50) = 3 microM) using the cysteamine or cystamine group as the connector. The biological evaluation results demonstrated that most of the compounds exhibited moderate to good inhibitory activities against acetylcholinesterase (AChE) and glycogen synthase kinase 3beta (GSK-3beta). The optimal compound 18a possessed potent dual AChE/GSK-3beta inhibition (AChE: IC(50) = 0.047 +/- 0.002 microM, GSK-3beta: IC(50) = 0.930 +/- 0.080 microM). Further molecular docking and enzymatic kinetic studies revealed that this compound could occupy both the catalytic anionic site and the peripheral anionic site of AChE. The results also showed a lack of toxicity to SH-SY5Y neuroblastoma cells at concentrations of up to 25 microM. Collectively, this work explored the structure-activity relationships of novel tetrahydroacridin hybrids with sulfur-inserted linkers, providing a reference for the further research and development of new multitarget anti-AD drugs.
ESTHER : Wu_2024_Molecules_29_
PubMedSearch : Wu_2024_Molecules_29_
PubMedID: 38675602

Title : Novel inhibitors of AChE and Abeta aggregation with neuroprotective properties as lead compounds for the treatment of Alzheimer's disease - Liu_2022_Eur.J.Med.Chem_235_114305
Author(s) : Liu Y , Uras G , Onuwaje I , Li W , Yao H , Xu S , Li X , Phillips J , Allen S , Gong Q , Zhang H , Zhu Z , Liu J , Xu J
Ref : Eur Journal of Medicinal Chemistry , 235 :114305 , 2022
Abstract : A series of sulfone analogs of donepezil were designed and synthesized as novel acetylcholinesterase (AChE) inhibitors with the potent inhibiting Abeta aggregation and providing neuroprotective effects as potential modalities for Alzheimer's disease (AD). Most of the target compounds displayed effective inhibition of AChE, especially compound 24r which displayed powerful inhibitory activity (IC(50) = 2.4 nM). Kinetic and docking studies indicated that compound 24r was a mixed-type inhibitor. Furthermore, in glyceraldehyde (GA)-exposed SH-SY5Y differentiated neuronal cells, compound 24r could potently inhibit AChE, reduce tau phosphorylation at S396 residue, provide neuroprotection by rescuing neuronal morphology and increasing cell viability. It was also found to reduce amyloid aggregation in the presence of AChE. In addition, compound 24r showed evident protections from mitochondrial membrane dysfunction and oxidative stress in okadaic acid-induced pharmacological models. Moreover, compound 24r exhibited more effective treatment prospects in vivo than donepezil, including a moderate blood-brain barrier permeability, a more potent AChE inhibitory activity and behavioral improvement in scopolamine-induced cognition-impaired mice model at a much lower dose. Collectively, compound 24r is a promising lead compound for further investigation to discovery and development of new anti-AD agents.
ESTHER : Liu_2022_Eur.J.Med.Chem_235_114305
PubMedSearch : Liu_2022_Eur.J.Med.Chem_235_114305
PubMedID: 35339839

Title : Discovery of Novel Tacrine-Pyrimidone Hybrids as Potent Dual AChE\/GSK-3 Inhibitors for the Treatment of Alzheimer's Disease - Yao_2021_J.Med.Chem__
Author(s) : Yao H , Uras G , Zhang P , Xu S , Yin Y , Liu J , Qin S , Li X , Allen S , Bai R , Gong Q , Zhang H , Zhu Z , Xu J
Ref : Journal of Medicinal Chemistry , : , 2021
Abstract : Based on a multitarget strategy, a series of novel tacrine-pyrimidone hybrids were identified for the potential treatment of Alzheimer's disease (AD). Biological evaluation results demonstrated that these hybrids exhibited significant inhibitory activities toward acetylcholinesterase (AChE) and glycogen synthase kinase 3 (GSK-3). The optimal compound 27g possessed excellent dual AChE/GSK-3 inhibition both in terms of potency and equilibrium (AChE: IC(50) = 51.1 nM; GSK-3beta: IC(50) = 89.3 nM) and displayed significant amelioration on cognitive deficits in scopolamine-induced amnesia mice and efficient reduction against phosphorylation of tau protein on Ser-199 and Ser-396 sites in glyceraldehyde (GA)-stimulated differentiated SH-SY5Y cells. Furthermore, compound 27g exhibited eligible pharmacokinetic properties, good kinase selectivity, and moderate neuroprotection against GA-induced reduction in cell viability and neurite damage in SH-SY5Y-derived neurons. The multifunctional profiles of compound 27g suggest that it deserves further investigation as a promising lead for the prospective treatment of AD.
ESTHER : Yao_2021_J.Med.Chem__
PubMedSearch : Yao_2021_J.Med.Chem__
PubMedID: 34024109

Title : The novel therapeutic strategy of vilazodone-donepezil chimeras as potent triple-target ligands for the potential treatment of Alzheimer's disease with comorbid depression - Li_2021_Eur.J.Med.Chem_229_114045
Author(s) : Li X , Li J , Huang Y , Gong Q , Fu Y , Xu Y , Huang J , You H , Zhang D , Mao F , Zhu J , Wang H , Zhang H
Ref : Eur Journal of Medicinal Chemistry , 229 :114045 , 2021
Abstract : Depression is one of the most frequent comorbid psychiatric symptoms of Alzheimer's disease (AD), and no efficacious drugs have been approved specifically for this purpose thus far. Herein, we proposed a novel therapeutic strategy that merged the key pharmacophores of the antidepressant vilazodone (5-HT(1A) receptor partial agonist and serotonin transporter inhibitor) and the anti-AD drug donepezil (acetylcholinesterase inhibitor) together to develop a series of multi-target-directed ligands for potential therapy of the comorbidity of AD and depression. Accordingly, 55 vilazodone-donepezil chimeric derivatives were designed and synthesized, and their triple-target activities against acetylcholinesterase, 5-HT(1A) receptor, and serotonin transporter were systematically evaluated. Among them, compound 5 displayed strong triple-target bioactivities in vitro, low hERG potassium channel inhibition and acceptable brain distribution. Importantly, oral intake of 5 mg/kg of the compound 5 dihydrochloride significantly alleviated the depressive symptoms and ameliorated cognitive dysfunction in mouse models. In brief, these results highlight vilazodone-donepezil chimeras as a prospective therapeutic approach for the treatment of the comorbidity of AD and depression.
ESTHER : Li_2021_Eur.J.Med.Chem_229_114045
PubMedSearch : Li_2021_Eur.J.Med.Chem_229_114045
PubMedID: 34922191

Title : Kinetics-Driven Drug Design Strategy for Next-Generation Acetylcholinesterase Inhibitors to Clinical Candidate - Zhou_2021_J.Med.Chem_64_1844
Author(s) : Zhou Y , Fu Y , Yin W , Li J , Wang W , Bai F , Xu S , Gong Q , Peng T , Hong Y , Zhang D , Liu Q , Xu Y , Xu HE , Zhang H , Jiang H , Liu H
Ref : Journal of Medicinal Chemistry , 64 :1844 , 2021
Abstract : The acetylcholinesterase (AChE) inhibitors remain key therapeutic drugs for the treatment of Alzheimer's disease (AD). However, the low-safety window limits their maximum therapeutic benefits. Here, a novel kinetics-driven drug design strategy was employed to discover new-generation AChE inhibitors that possess a longer drug-target residence time and exhibit a larger safety window. After detailed investigations, compound 12 was identified as a highly potent, highly selective, orally bioavailable, and brain preferentially distributed AChE inhibitor. Moreover, it significantly ameliorated cognitive impairments in different mouse models with a lower effective dose than donepezil. The X-ray structure of the cocrystal complex provided a precise binding mode between 12 and AChE. Besides, the data from the phase I trials demonstrated that 12 had good safety, tolerance, and pharmacokinetic profiles at all preset doses in healthy volunteers, providing a solid basis for its further investigation in phase II trials for the treatment of AD.
ESTHER : Zhou_2021_J.Med.Chem_64_1844
PubMedSearch : Zhou_2021_J.Med.Chem_64_1844
PubMedID: 33570950
Gene_locus related to this paper: human-ACHE

Title : Structural and biochemical mechanisms of NLRP1 inhibition by DPP9 - Huang_2021_Nature__
Author(s) : Huang M , Zhang X , Toh GA , Gong Q , Wang J , Han Z , Wu B , Zhong F , Chai J
Ref : Nature , : , 2021
Abstract : Nucleotide-binding domain, leucine-rich repeat receptors (NLRs) mediate innate immunity by forming inflammasomes. Activation of the NLR protein NLRP1 requires autocleavage within its function-to-find domain (FIIND)(1-7). In resting cells, the dipeptidyl peptidases DPP8 and DPP9 interact with the FIIND of NLRP1 and suppress spontaneous NLRP1 activation(8,9); however, the mechanisms through which this occurs remain unknown. Here we present structural and biochemical evidence that full-length rat NLRP1 (rNLRP1) and rat DPP9 (rDPP9) form a 2:1 complex that contains an autoinhibited rNLRP1 molecule and an active UPA-CARD fragment of rNLRP1. The ZU5 domain is required not only for autoinhibition of rNLRP1 but also for assembly of the 2:1 complex. Formation of the complex prevents UPA-mediated higher-order oligomerization of UPA-CARD fragments and strengthens ZU5-mediated NLRP1 autoinhibition. Structure-guided biochemical and functional assays show that both NLRP1 binding and enzymatic activity are required for DPP9 to suppress NLRP1 in human cells. Together, our data reveal the mechanism of DPP9-mediated inhibition of NLRP1 and shed light on the activation of the NLRP1 inflammasome.
ESTHER : Huang_2021_Nature__
PubMedSearch : Huang_2021_Nature__
PubMedID: 33731929
Gene_locus related to this paper: rat-dpp9

Title : Identification of genes involved in sex pheromone biosynthesis and metabolic pathway in the Chinese oak silkworm, Antheraea pernyi - Wang_2020_Int.J.Biol.Macromol_163_1487
Author(s) : Wang QH , Gong Q , Fang SM , Liu YQ , Zhang Z , Yu QY
Ref : Int J Biol Macromol , 163 :1487 , 2020
Abstract : The Chinese oak silkworm, Antheraea pernyi, has not only been semi-domesticated as an important economical insect but also used for genetic research. The female moths of A. pernyi employ a pheromone blend containing (E,Z)-6,11-hexadecadienal (E6,Z11-16:Ald), (E,Z)-6,11-hexadecadienyl acetate (E6,Z11-16:OAc), and (E,Z)-4,9-tetradecadienyl acetate (E4,Z9-14:OAc). While its biosynthesis pathway is largely unknown. By deep sequencing and de novo assembly of sex pheromone gland (PG) transcriptome, we identified 141 candidate genes that are putatively related to pheromone biosynthesis, degradation, and chemoreception in A. pernyi. Gene expression patterns and phylogenetic analysis revealed that two desaturases (AperDES1 and 2), two fatty acid reductase (AperFAR1 and 2), and three acetyltransferase genes (AperACT1, 2 and 3) showed PG-biased or specific expression and were phylogenetically related to genes known to be involved in pheromone synthesis in other species. Furthermore, two carboxylesterases (AperCOE6 and 11) and two chemosensory protein (AperCSP1 and 6) were also expressed specifically or predominantly in the PGs, which might be related to sex pheromone degradation and transportation, respectively. Based on these results, the sex pheromone biosynthesis and metabolic pathway was proposed in A. pernyi. This study provides some crucial candidates for further functional elucidation, and may be used for interfering sexual communication in other Saturniidae pests.
ESTHER : Wang_2020_Int.J.Biol.Macromol_163_1487
PubMedSearch : Wang_2020_Int.J.Biol.Macromol_163_1487
PubMedID: 32755713

Title : Novel Tadalafil Derivatives Ameliorates Scopolamine-Induced Cognitive Impairment in Mice via Inhibition of Acetylcholinesterase (AChE) and Phosphodiesterase 5 (PDE5) - Ni_2018_ACS.Chem.Neurosci_9_1625
Author(s) : Ni W , Wang H , Li X , Zheng X , Wang M , Zhang J , Gong Q , Ling D , Mao F , Zhang H , Li J
Ref : ACS Chem Neurosci , 9 :1625 , 2018
Abstract : On the basis of the drug-repositioning and redeveloping strategy, first-generation dual-target inhibitors of acetylcholinesterase (AChE) and phosphodiesterase 5 (PDE5) have been recently reported as a potentially novel therapeutic method for the treatment of Alzheimer's disease (AD), and the lead compound 2 has proven this method was feasible in AD mouse models. In this study, our work focused on exploring alternative novel tadalafil derivatives (3a-s). Among the 19 analogues, compound 3c exhibited good selective dual-target AChE/PDE5 inhibition and good blood-brain barrier (BBB) permeability. Moreover, its citrate (3c.Cit) possessed improved water solubility and good effects against scopolamine-induced cognitive impairment with inhibition of cortical AChE activities and enhancement of cAMP response element-binding protein (CREB) phosphorylation ex vivo.
ESTHER : Ni_2018_ACS.Chem.Neurosci_9_1625
PubMedSearch : Ni_2018_ACS.Chem.Neurosci_9_1625
PubMedID: 29616790

Title : A novel non-enzymatic hydrolytic probe for dipeptidyl peptidase IV specific recognition and imaging - Xing_2018_Chem.Commun.(Camb)_54_8773
Author(s) : Xing J , Gong Q , Zhang R , Sun S , Zou R , Wu A
Ref : Chem Commun (Camb) , 54 :8773 , 2018
Abstract : A novel non-enzymatic hydrolytic probe for DPP IV is obtained. And this new probe can be used for special DPP IV recognition and imaging in living cells. Importantly, one general strategy for the construction of new non-enzymatic fluorescent probes for many important proteases can be proposed based on the present study.
ESTHER : Xing_2018_Chem.Commun.(Camb)_54_8773
PubMedSearch : Xing_2018_Chem.Commun.(Camb)_54_8773
PubMedID: 30035284

Title : Novel Vilazodone-Tacrine Hybrids as Potential Multitarget-Directed Ligands for the Treatment of Alzheimer's Disease Accompanied with Depression: Design, Synthesis, and Biological Evaluation - Li_2017_ACS.Chem.Neurosci_8_2708
Author(s) : Li X , Wang H , Xu Y , Liu W , Gong Q , Wang W , Qiu X , Zhu J , Mao F , Zhang H , Li J
Ref : ACS Chem Neurosci , 8 :2708 , 2017
Abstract : Depression is one of the most frequent psychiatric complications of Alzheimer's disease (AD), affecting up to 50% of the patients. A novel series of hybrid molecules were designed and synthesized by combining the pharmacophoric features of vilazodone and tacrine as potential multitarget-directed ligands for the treatment of AD with depression. In vitro biological assays were conducted to evaluate the compounds; among the 30 hybrids, compound 1e showed relatively balanced profiles between acetylcholinesterase inhibition (IC50 = 3.319 +/- 0.708 muM), 5-HT1A agonist (EC50 = 107 +/- 37 nM), and 5-HT reuptake inhibition (IC50 = 76.3 +/- 33 nM). Compound 1e displayed tolerable hepatotoxicity and moderate hERG inhibition activity, and could penetrate the blood-brain barrier in vivo. Furthermore, an oral intake of 30 mg/kg 1e.HCl could significantly improve the cognitive function of scopolamine-induced amnesia mice and alleviate the depressive symptom in tail suspension test. The effectivity of 1e validates the rationality of our design strategy.
ESTHER : Li_2017_ACS.Chem.Neurosci_8_2708
PubMedSearch : Li_2017_ACS.Chem.Neurosci_8_2708
PubMedID: 28872831

Title : Ultrasensitive Fluorescent Probes Reveal an Adverse Action of Dipeptide Peptidase IV and Fibroblast Activation Protein during Proliferation of Cancer Cells - Gong_2016_Anal.Chem_88_8309
Author(s) : Gong Q , Shi W , Li L , Wu X , Ma H
Ref : Analytical Chemistry , 88 :8309 , 2016
Abstract : Dipeptide peptidase IV (DPPIV) and fibroblast activation protein (FAP) are isoenzymes. Evidence shows that DPPIV is related to antitumor immunity, and FAP may be a drug target in cancer therapy, making it seem that the two enzymes might have a synergistic role during the proliferation of cancer cells. Surprisingly, herein, we find an adverse action of DPPIV and FAP in the proliferation process by analyzing their changes with two tailor-made ultrasensitive fluorescent probes. First, the up-regulation of DPPIV and down-regulation of FAP in cancer cells under the stimulation of genistein are detected. Then, we find that MGC803 cells with a higher FAP but lower DPPIV level than SGC7901 cells exhibit a faster proliferation rate. Importantly, inhibiting the DPPIV expression with siRNA increases the proliferation rate of MGC803 cells, whereas the FAP inhibition decreases the rate. These findings suggest that the two enzymes play an adverse role during the proliferation of cancer cells, which provides us a new viewpoint for cancer studies.
ESTHER : Gong_2016_Anal.Chem_88_8309
PubMedSearch : Gong_2016_Anal.Chem_88_8309
PubMedID: 27444320

Title : Reducing iron in the brain: a novel pharmacologic mechanism of huperzine A in the treatment of Alzheimer's disease - Huang_2014_Neurobiol.Aging_35_1045
Author(s) : Huang XT , Qian ZM , He X , Gong Q , Wu KC , Jiang LR , Lu LN , Zhu ZJ , Zhang HY , Yung WH , Ke Y
Ref : Neurobiology of Aging , 35 :1045 , 2014
Abstract : Huperzine A (HupA), a natural inhibitor of acetylcholinesterase derived from a plant, is a licensed anti-Alzheimer's disease (AD) drug in China and a nutraceutical in the United States. In addition to acting as an acetylcholinesterase inhibitor, HupA possesses neuroprotective properties. However, the relevant mechanism is unknown. Here, we showed that the neuroprotective effect of HupA was derived from a novel action on brain iron regulation. HupA treatment reduced insoluble and soluble beta amyloid levels, ameliorated amyloid plaques formation, and hyperphosphorylated tau in the cortex and hippocampus of APPswe/PS1dE9 transgenic AD mice. Also, HupA decreased beta amyloid oligomers and amyloid precursor protein levels, and increased A Disintegrin And Metalloprotease Domain 10 (ADAM10) expression in these treated AD mice. However, these beneficial effects of HupA were largely abolished by feeding the animals with a high iron diet. In parallel, we found that HupA decreased iron content in the brain and demonstrated that HupA also has a role to reduce the expression of transferrin-receptor 1 as well as the transferrin-bound iron uptake in cultured neurons. The findings implied that reducing iron in the brain is a novel mechanism of HupA in the treatment of Alzheimer's disease.
ESTHER : Huang_2014_Neurobiol.Aging_35_1045
PubMedSearch : Huang_2014_Neurobiol.Aging_35_1045
PubMedID: 24332448

Title : Design, synthesis and biological evaluation of novel dual inhibitors of acetylcholinesterase and beta-secretase - Zhu_2009_Bioorg.Med.Chem_17_1600
Author(s) : Zhu Y , Xiao K , Ma L , Xiong B , Fu Y , Yu H , Wang W , Wang X , Hu D , Peng H , Li J , Gong Q , Chai Q , Tang X , Zhang H , Shen J
Ref : Bioorganic & Medicinal Chemistry , 17 :1600 , 2009
Abstract : To explore novel effective drugs for the treatment of Alzheimer's disease (AD), a series of dual inhibitors of acetylcholineterase (AChE) and beta-secretase (BACE-1) were designed based on the multi-target-directed ligands strategy. Among them, inhibitor 28 exhibited good dual potency in enzyme inhibitory potency assay (BACE-1: IC(50)=0.567 microM; AChE: IC(50)=1.83 microM), and also showed excellent inhibitory effects on Abeta production of APP transfected HEK293 cells (IC(50)=98.7 nM) and mild protective effect against hydrogen peroxide (H(2)O(2))-induced PC12 cell injury. Encouragingly, intracerebroventricular injection of 28 into amyloid precursor protein (APP) transgenic mice caused a 29% reduction of Abeta(1-40) production. Therefore, 28 was demonstrated as a good lead compound for the further study and more importantly, the strategy of AChE and BACE-1 dual inhibitors might be a promising direction for developing novel drugs for AD patients.
ESTHER : Zhu_2009_Bioorg.Med.Chem_17_1600
PubMedSearch : Zhu_2009_Bioorg.Med.Chem_17_1600
PubMedID: 19162488

Title : Induction of osteopontin expression by nicotine and cigarette smoke in the pancreas and pancreatic ductal adenocarcinoma cells - Chipitsyna_2009_Int.J.Cancer_125_276
Author(s) : Chipitsyna G , Gong Q , Anandanadesan R , Alnajar A , Batra SK , Wittel UA , Cullen DM , Akhter MP , Denhardt DT , Yeo CJ , Arafat HA
Ref : International Journal of Cancer , 125 :276 , 2009
Abstract : Pancreatic ductal adenocarcinoma (PDA) is a lethal disease with etiological association with cigarette smoking. Nicotine, an important component of cigarettes, exists at high concentrations in the bloodstream of smokers. Osteopontin (OPN) is a secreted phosphoprotein that confers on cancer cells a migratory phenotype and activates signaling pathways that induce cell survival, proliferation, invasion, and metastasis. Here, we investigated the potential molecular basis of nicotine's role in PDA through studying its effect on OPN. Nicotine significantly (p < 0.02) increased OPN mRNA and protein secretion in PDA cells through activation of the OPN gene promoter. The OPN mRNA induction was inhibited by the nicotinic acetylcholine receptor antagonist, mechamylamine. Further, the tyrosine kinase inhibitor genistein inhibited the nicotine-mediated induction of OPN, suggesting that mitogen activated protein kinase signaling mechanism is involved. Nicotine activated the phosphorylation of ERK1/2, but not p38 or c-Jun NH2-terminal MAP kinases. Inhibition of ERK1/2 activation reduced the nicotine-induced OPN synthesis. Rats exposed to cigarette smoke showed a dose-dependent increase in pancreatic OPN that paralleled the rise of pancreatic and plasma nicotine levels. Analysis of cancer tissue from invasive PDA patients, the majority of whom were smokers, showed the presence of significant amounts of OPN in the malignant ducts and the surrounding pancreatic acini. Our data suggest that nicotine may contribute to PDA pathogenesis through upregulation of OPN. They provide the first insight into a nicotine-initiated signal transduction pathway that regulates OPN as a possible tumorigenic mechanism in PDA.
ESTHER : Chipitsyna_2009_Int.J.Cancer_125_276
PubMedSearch : Chipitsyna_2009_Int.J.Cancer_125_276
PubMedID: 19358273

Title : Localization and regulation of low affinity nerve growth factor receptor expression in the rat olfactory system during development and regeneration - Gong_1994_J.Comp.Neurol_344_336
Author(s) : Gong Q , Bailey MS , Pixley SK , Ennis M , Liu W , Shipley MT
Ref : Journal of Comparative Neurology , 344 :336 , 1994
Abstract : Nerve growth factor (NGF), a classic neurotrophic factor, promotes neuronal survival, maintenance, regeneration and differentiation in the peripheral nervous system and parts of the central nervous system. NGF activity is mediated by cell surface bound receptors including the low affinity NGF receptor (LNGFr) which is expressed by some peripheral and central neurons and is present on peripheral nerve Schwann cells during development and regeneration. The olfactory system is a useful model for the study of the role of LNGFr in neuronal development and regeneration. The growth of olfactory axons into the brain begins in the embryo and continues through the first few postnatal weeks. In mature animals there is persistent turnover and generation of olfactory receptor neurons (ORNs) and continuous growth of new axons into the olfactory bulb. These new axons grow along the preexisting olfactory pathway. In the mature olfactory system, LNGFr has been observed in the glomerular layer of the olfactory bulb, the target of ORNs. However, neither the cellular localization nor the developmental expression of LNGFr has been characterized. Here, we tested the hypothesis that LNGFr expression is developmentally regulated in the olfactory nerve and is reinduced following injury to the mature olfactory nerve. LNGFr-immunoreactivity (IR) was first observed in the olfactory mucosa at embryonic day (E)13 and in the olfactory nerve at E14. LNGFr-IR increased in the nerve during embryonic development, began to decrease at around postnatal day (P)5 and was scarcely detectable in normal adults. The staining pattern suggests that LNGFr is located on the olfactory nerve Schwann cells. Streaks of LNGFr-IR were present in the adult olfactory nerve. We reasoned that these streaks might represent transient reexpression of LNGFr associated with normal olfactory neuron turnover and replacement. Consistent with this hypothesis, LNGFr was robustly reexpressed in the adult olfactory nerve following lesion of the olfactory epithelium. Starting late in development (E21) and in the adult, LNGFr-IR was also observed on fibers in deep layers of the olfactory bulb. LNGFr-IR was also observed in neurons of the nucleus of the diagonal band (NDB) in the basal forebrain. NDB is the sole source of cholinergic afferents of the olfactory bulb. Thus, we tested the hypothesis that LNGFr in the deep layers of the olfactory bulb is located on NDB axons by making lesions of NDB. Following the lesion, LNGFr-IR disappeared in the deep layers of the olfactory bulb but remained in the glomerular layer.
ESTHER : Gong_1994_J.Comp.Neurol_344_336
PubMedSearch : Gong_1994_J.Comp.Neurol_344_336
PubMedID: 8063958