Title : Structural Definition of a Unique Neutralization Epitope on the Receptor-Binding Domain of MERS-CoV Spike Glycoprotein - Zhang_2018_Cell.Rep_24_441 |
Author(s) : Zhang S , Zhou P , Wang P , Li Y , Jiang L , Jia W , Wang H , Fan A , Wang D , Shi X , Fang X , Hammel M , Wang S , Wang X , Zhang L |
Ref : Cell Rep , 24 :441 , 2018 |
Abstract :
The major mechanism of antibody-mediated neutralization of the Middle East respiratory syndrome coronavirus (MERS-CoV) involves competition with the cellular receptor dipeptidyl peptidase 4 (DPP4) for binding to the receptor-binding domain (RBD) of the spike (S) glycoprotein. Here, we report a unique epitope and unusual neutralizing mechanism of the isolated human antibody MERS-4. Structurally, MERS-4 approached the RBD from the outside of the RBD-DPP4 binding interface. Such binding resulted in the folding of the beta5-beta6 loop toward a shallow groove on the RBD interface critical for accommodating DPP4. The key residues for binding are identified through site-directed mutagenesis. Structural modeling revealed that MERS-4 binds to RBD only in the "up" position in the S trimer. Furthermore, MERS-4 demonstrated synergy with several reported antibodies. These results indicate that MERS-4 neutralizes MERS-CoV by indirect rather than direct competition with DPP4. This mechanism provides a valuable addition for the combined use of antibodies against MERS-CoV infection. |
PubMedSearch : Zhang_2018_Cell.Rep_24_441 |
PubMedID: 29996104 |
Zhang S, Zhou P, Wang P, Li Y, Jiang L, Jia W, Wang H, Fan A, Wang D, Shi X, Fang X, Hammel M, Wang S, Wang X, Zhang L (2018)
Structural Definition of a Unique Neutralization Epitope on the Receptor-Binding Domain of MERS-CoV Spike Glycoprotein
Cell Rep
24 :441
Zhang S, Zhou P, Wang P, Li Y, Jiang L, Jia W, Wang H, Fan A, Wang D, Shi X, Fang X, Hammel M, Wang S, Wang X, Zhang L (2018)
Cell Rep
24 :441