Zhao_2019_Sci.Total.Environ_700_134492

Reference

Title : Graphene oxide disrupts the protein-protein interaction between Neuroligin\/NLG-1 and DLG-1 or MAGI-1 in nematode Caenorhabditis elegans - Zhao_2019_Sci.Total.Environ_700_134492
Author(s) : Zhao Y , Chen H , Yang Y , Wu Q , Wang D
Ref : Sci Total Environ , 700 :134492 , 2019
Abstract :

Graphene oxide (GO) is a carbon-based engineered nanomaterial (ENM). Using Caenorhabditis elegans as an animal model, we investigated the effect of GO exposure on protein-protein interactions. In nematodes, NLG-1/Neuroligin, a postsynaptic protein, acted only in the neurons to regulate the GO toxicity. In the neurons, DLG-1, a PSD-95 protein, and MAGI-1, a S-SCAM protein, were identified as the downstream targets of NLG-1 in the regulation of GO toxicity. PKC-1, a serine/threonine protein kinase C, further acted downstream of neuronal DLG-1 and MAGI-1 to regulate the GO toxicity. Co-immunoprecipitation analysis demonstrated the protein-protein interaction between NLG-1 and DLG-1 or MAGI-1. After GO expression, this protein-protein interaction between NLG-1 and DLG-1 or MAGI-1 was significantly inhibited. Therefore, our data raised the evidence to suggest the potential of GO exposure in disrupting protein-protein interactions in organisms.

PubMedSearch : Zhao_2019_Sci.Total.Environ_700_134492
PubMedID: 31627046
Gene_locus related to this paper: caeel-NLGN1 , human-NLGN1

Related information

Gene_locus caeel-NLGN1    human-NLGN1

Citations formats

Zhao Y, Chen H, Yang Y, Wu Q, Wang D (2019)
Graphene oxide disrupts the protein-protein interaction between Neuroligin\/NLG-1 and DLG-1 or MAGI-1 in nematode Caenorhabditis elegans
Sci Total Environ 700 :134492

Zhao Y, Chen H, Yang Y, Wu Q, Wang D (2019)
Sci Total Environ 700 :134492