De Jaco_2006_J.Biol.Chem_281_9667

Reference

Title : A mutation linked with autism reveals a common mechanism of endoplasmic reticulum retention for the alpha,beta-hydrolase fold protein family - De Jaco_2006_J.Biol.Chem_281_9667
Author(s) : De Jaco A , Comoletti D , Kovarik Z , Gaietta G , Radic Z , Lockridge O , Ellisman MH , Taylor P
Ref : Journal of Biological Chemistry , 281 :9667 , 2006
Abstract : A mutation linked to autistic spectrum disorders encodes an Arg to Cys replacement in the C-terminal portion of the extracellular domain of neuroligin-3. The solvent-exposed Cys causes virtually complete retention of the protein in the endoplasmic reticulum when the protein is expressed in transfected cells. An identical Cys substitution was reported for butyrylcholinesterase through genotyping patients with post-succinylcholine apnea. Neuroligin, butyrylcholinesterase, and acetylcholinesterase are members of the alpha,beta-hydrolase fold family of proteins sharing sequence similarity and common tertiary structures. Although these proteins have distinct oligomeric assemblies and cellular dispositions, homologous Arg residues in neuroligin-3 (Arg-451), in butyrylcholinesterase (Arg-386), and in acetylcholinesterase (Arg-395) are conserved in all studied mammalian species. To examine whether an homologous Arg to Cys mutation affects related proteins similarly despite their differing capacities to oligomerize, we inserted homologous mutations in the acetylcholinesterase and butyrylcholinesterase cDNAs. Using confocal fluorescence microscopy and analysis of oligosaccharide processing, we find that the homologous Arg to Cys mutation also results in endoplasmic reticulum retention of the two cholinesterases. Small quantities of mutated acetylcholinesterase exported from the cell retain activity but show a greater K(m), a much smaller k(cat), and altered substrate inhibition. The nascent proteins associate with chaperones during processing, but the mutation presumably restricts processing through the endoplasmic reticulum and Golgi apparatus, because of local protein misfolding and inability to oligomerize. The mutation may alter the capacity of these proteins to dissociate from their chaperone prior to oligomerization and processing for export.
ESTHER : De Jaco_2006_J.Biol.Chem_281_9667
PubMedSearch : De Jaco_2006_J.Biol.Chem_281_9667
PubMedID: 16434405

Related information

Citations formats

De Jaco A, Comoletti D, Kovarik Z, Gaietta G, Radic Z, Lockridge O, Ellisman MH, Taylor P (2006)
A mutation linked with autism reveals a common mechanism of endoplasmic reticulum retention for the alpha,beta-hydrolase fold protein family
Journal of Biological Chemistry 281 :9667

De Jaco A, Comoletti D, Kovarik Z, Gaietta G, Radic Z, Lockridge O, Ellisman MH, Taylor P (2006)
Journal of Biological Chemistry 281 :9667