Liang D

References (8)

Title : Prophylactic and therapeutic inhalation of two essential oils ameliorates scopolamine-induced cognitive impairment in mice - Wang_2024_Nat.Prod.Res__1
Author(s) : Wang W , Yang J , Liang D , Yao L , Ma L
Ref : Nat Prod Res , :1 , 2024
Abstract : Clover and lemongrass essential oils of contrasting composition, at three concentration levels (1%, 5%, 10%), were administrated via prophylactic and therapeutic inhalation to scopolamine-treated mice. Chemical analysis showed that clover oil was dominant in eugenol (47.69%) and lemongrass free of eugenol but mainly containing monoterpenoids of comparable proportions. Animal behavioural and brain biochemical tests showed that injection of scopolamine caused memory and learning deficit in mice while prophylactic and therapeutic inhalation of two oils at moderate to high concentrations all obviously reversed the cognitive impairment via inhibiting acetylcholinesterase activities, oxidation and inflammation. Lemongrass essential oil with diverse monoterpenoids can be as effective as or a little bit more potent than eugenol-rich clover essential oil possibly due to the synergistic effect of various monoterpenoids. These findings implied that sniffing of such aroma recipes could be a promising complementary approach for the mitigation of Alzheimer's disease-related cognitive impairment.
ESTHER : Wang_2024_Nat.Prod.Res__1
PubMedSearch : Wang_2024_Nat.Prod.Res__1
PubMedID: 38557211

Title : A retrospective screening method for carbamate toxicant exposure based on butyrylcholinesterase adducts in human plasma with ultra-high performance liquid chromatography-tandem mass spectrometry - Ren_2023_J.Chromatogr.B.Analyt.Technol.Biomed.Life.Sci_1225_123775
Author(s) : Ren Z , Chen B , Liang D , Liu D , Lei W , Liu S
Ref : Journal of Chromatography B Analyt Technol Biomed Life Sciences , 1225 :123775 , 2023
Abstract : Carbamate pesticides are extensively used in agriculture for their inhibition to acetylcholinesterase and damages to the insects' neural systems. Because of their toxicity, human poisoning incidents caused by carbamate pesticide exposure have occurred from time to time. What's more, some lethally toxic carbamate toxicants known as carbamate nerve agents (CMNAs) have been supplemented in Schedule 1 of the Annex on Chemicals in the Chemical Weapons Convention (CWC) by Organisation of the Prohibition of Chemical Weapons (OPCW) from 2020. And some other carbamates, like physostigmine, have been used in clinical treatment as anticholinergic drugs and their misuse may also cause damages to the body. Similar to organophosphorus toxicants, carbamate toxicants would react with butyrylcholinesterase (BChE) in plasma when entering the human body, resulting in the BChE adducts, based on which the exposure of carbamate toxicants could be detected retrospectively. In this study, methylcarbamyl nonapeptide and dimethylcarbamyl nonapeptide from pepsin digestion of BChE adducts were identified with ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) in product ion scan mode. Carbofuran was chosen as the target to establish the detection method of carbamate toxicant exposure based on methylcarbamyl nonapeptide digested from methylcarbamyl BChE. Procainamide-gel affinity purification, pepsin digestion and UHPLC-MS/MS analysis in multiple reaction monitoring (MRM) mode were applied. Under the optimized conditions of sample preparation and UHPLC-MS/MS MRM analysis, the limits of detection (LODs) reached 10.0 ng/mL of plasma exposed to carbofuran with satisfactory specificity. The quantitation approach was established with d(3)-carbofuran-exposed plasma as the internal standard (IS) and the linearity range was 30.0-1.00 x 10(3) nmol/L (R(2) >0.998) with the accuracy of 95.6%-107% and precision of >=9% relative standard deviation (RSD). The applicability was also evaluated by N,N-dimethyl-carbamates with the LODs of 30.0 nmol/L for pirimicarb-exposed plasma based on dimethylcarbamyl nonapeptide. Because most of carbamate toxicants has methylcarbamyl or dimethylcarbamyl groups, this approach could be applied on the retrospective screening of carbamate toxicant exposure including CMNAs, carbamate pesticides or carbamate drugs. This study could provide an effective means in the fields of CWC verification, toxicological mechanism investigation and down-selection of potential treatment options.
ESTHER : Ren_2023_J.Chromatogr.B.Analyt.Technol.Biomed.Life.Sci_1225_123775
PubMedSearch : Ren_2023_J.Chromatogr.B.Analyt.Technol.Biomed.Life.Sci_1225_123775
PubMedID: 37285767

Title : A new facet of NDRG1 in pancreatic ductal adenocarcinoma: Suppression of glycolytic metabolism - Liu_2017_Int.J.Oncol_50_1792
Author(s) : Liu W , Zhang B , Hu Q , Qin Y , Xu W , Shi S , Liang C , Meng Q , Xiang J , Liang D , Ji S , Liu J , Hu P , Liu L , Liu C , Long J , Ni Q , Yu X , Xu J
Ref : Int J Oncol , 50 :1792 , 2017
Abstract : N-myc downstream-regulated gene 1 (NDRG1) is known as tumor/metastasis suppressor in a variety of cancers including pancreas, being involved in angiogenesis, cancer growth and metastasis. However, the precise molecular mechanism how NDRG1 exerts its inhibitory function in pancreatic cancer remains unclear. In this investigation, we demonstrated that K-Ras plays a vital role in modulating NDRG1 protein level in PDAC cancer cells in vitro, which is mediated through ERK signaling. Noteworthy, K-Ras downstream Akt/mTOR signaling is inhibited upon NDRG1 overexpression, resulting in decease of HIF1alpha level. Moreover, NDRG1 has a unique role in modulating cancer metabolism of pancreatic ductal adenocarcinoma (PDAC). The mechanism accounting for NDRG1 in modulating aerobic glycolysis, at least partly, relied on its regulation of glycolysis genes including GLUT1, HK2, LDHA and PDK1. Additionally, NDRG1 is shown to suppress the activity of HIF1alpha, which is responsible for regulation of glycolysis enzymes. The current study is the first to elucidate a unique facet of the potent tumor/metastasis suppressor NDRG1 in the regulation of PDAC glycolysis, leading to important insights into the mechanism by which NDRG1 exert inhibitory function in PDAC.
ESTHER : Liu_2017_Int.J.Oncol_50_1792
PubMedSearch : Liu_2017_Int.J.Oncol_50_1792
PubMedID: 28350132

Title : Multiple genome alignments facilitate development of NPCL markers: a case study of tetrapod phylogeny focusing on the position of turtles - Shen_2011_Mol.Biol.Evol_28_3237
Author(s) : Shen XX , Liang D , Wen JZ , Zhang P
Ref : Molecular Biology Evolution , 28 :3237 , 2011
Abstract : In recent years, the increasing availability of genomic resources has provided an opportunity to develop phylogenetic markers for phylogenomics. Efficient methods to search for candidate markers from the huge number of genes within genomic data are particularly needed in the era of phylogenomics. Here, rather than using the traditional approach of comparing genomes of two distantly related taxa to develop conserved primers, we take advantage of the multiple genome alignment resources from the the University of California-San Cruz Genome Browser and present a simple and straightforward bioinformatic approach to automatically screen for candidate nuclear protein-coding locus (NPCL) markers. We tested our protocol in tetrapods and successfully obtained 21 new NPCL markers with high success rates of polymerase chain reaction amplification (mostly over 80%) in 16 diverse tetrapod taxa. These 21 newly developed markers together with two reference genes (RAG1 and mitochondrial 12S-16S) are used to infer the higher level relationships of tetrapods, with emphasis on the debated position of turtles. Both maximum likelihood (ML) and Bayesian analyses on the concatenated data combining the 23 markers (21,137 bp) yield the same tree, with ML bootstrap values over 95% and Bayesian posterior probability equaling 1.0 for most nodes. Species tree estimation using the program BEST without data concatenation produces similar results. In all analyses, turtles are robustly recovered as the sister group of Archosauria (birds and crocodilians). The jackknife analysis on the concatenated data showed that the minimum sequence length needed to robustly resolve the position of turtles is 13-14 kb. Based on the large 23-gene data set and the well-resolved tree, we also estimated evolutionary timescales for tetrapods with the popular Bayesian method MultiDivTime. Most of the estimated ages among tetrapods are similar to the average estimates of the previous dating studies summarized by the book The Timetree of Life.
ESTHER : Shen_2011_Mol.Biol.Evol_28_3237
PubMedSearch : Shen_2011_Mol.Biol.Evol_28_3237
PubMedID: 21680872
Gene_locus related to this paper: pelsi-BCHE

Title : Targeting acetylcholinesterase to membrane rafts: a function mediated by the proline-rich membrane anchor (PRiMA) in neurons - Xie_2010_J.Biol.Chem_285_11537
Author(s) : Xie HQ , Liang D , Leung KW , Chen VP , Zhu KY , Chan WK , Choi RC , Massoulie J , Tsim KWK
Ref : Journal of Biological Chemistry , 285 :11537 , 2010
Abstract : In the mammalian brain, acetylcholinesterase (AChE) is anchored in cell membranes by a transmembrane protein PRiMA (proline-rich membrane anchor). We present evidence that at least part of the PRiMA-linked AChE is integrated in membrane microdomains called rafts. A significant proportion of PRiMA-linked AChE tetramers from rat brain was recovered in raft fractions; this proportion was markedly higher at low rather than at high concentrations of cold Triton X-100. The detergent-resistant fraction increased during brain development. In NG108-15 neuroblastoma cells transfected with cDNAs encoding AChE(T) and PRiMA, PRiMA-linked G(4) AChE was found in membrane rafts and showed the same sensitivity to cold Triton X-100 extraction as in the brain. The association of PRiMA-linked AChE with rafts was weaker than that of glycosylphosphatidylinositol-anchored G(2) AChE or G(4) Q(N)-H(C)-linked AChE. It was found to depend on the presence of a cholesterol-binding motif, called CRAC (cholesterol recognition/interaction amino acid consensus), located at the junction of transmembrane and cytoplasmic domains of both PRiMA I and II isoforms. The cytoplasmic domain of PRiMA, which differs between PRiMA I and PRiMA II, appeared to play some role in stabilizing the raft localization of G(4) AChE, because the Triton X-100-resistant fraction was smaller with the shorter PRiMA II isoform than that with the longer PRiMA I isoform.
ESTHER : Xie_2010_J.Biol.Chem_285_11537
PubMedSearch : Xie_2010_J.Biol.Chem_285_11537
PubMedID: 20147288

Title : Respective roles of the catalytic domains and C-terminal tail peptides in the oligomerization and secretory trafficking of human acetylcholinesterase and butyrylcholinesterase - Liang_2009_FEBS.J_276_94
Author(s) : Liang D , Blouet JP , Borrega F , Bon S , Massoulie J
Ref : Febs J , 276 :94 , 2009
Abstract : Butyrylcholinesterase (BChE) and the T splice variant of acetylcholinesterase that is predominant in mammalian brain and muscles (AChE(T)) possess a characteristic C-terminal tail (t) peptide. This t peptide allows their assembly into tetramers associated with the anchoring proteins ColQ and PRiMA. Although the t peptides of all vertebrate cholinesterases are remarkably similar and, in particular, contain seven strictly conserved aromatic residues, these enzymes differ in some of their oligomerization properties. To explore these differences, we studied human AChE (Aa) and BChE (Bb), and chimeras in which the t peptides (a and b) were exchanged (Ab and Ba). We found that secretion was increased by deletion of the t peptides, and that it was more efficient with a than with b. The patterns of oligomers were similar for Aa and Ab, as well as for Ba and Bb, indicating a predominant influence of the catalytic domains. However, addition of a cysteine within the aromatic-rich segment of the t peptides modified the oligomeric patterns: with a cysteine at position 19, the proportion of tetramers was markedly increased for Aa(S19C) and Ba(S19C), and to a lesser extent for Bb(N19C); the Ab(N19C) mutant produced all oligomeric forms, from monomers to hexamers. These results indicate that both the catalytic domains and the C-terminal t peptides contribute to the capacity of cholinesterases to form and secrete various oligomers. Sequence comparisons show that the differences between the t peptides of AChE and BChE are remarkably conserved among all vertebrates, suggesting that they reflect distinct functional adaptations.
ESTHER : Liang_2009_FEBS.J_276_94
PubMedSearch : Liang_2009_FEBS.J_276_94
PubMedID: 19019080

Title : Protein CutA undergoes an unusual transfer into the secretory pathway and affects the folding, oligomerization, and secretion of acetylcholinesterase - Liang_2009_J.Biol.Chem_284_5195
Author(s) : Liang D , Nunes-Tavares N , Xie HQ , Carvalho S , Bon S , Massoulie J
Ref : Journal of Biological Chemistry , 284 :5195 , 2009
Abstract : The mammalian protein CutA was first discovered in a search for the membrane anchor of mammalian brain acetylcholinesterase (AChE). It was co-purified with AChE, but it is distinct from the real transmembrane anchor protein, PRiMA. CutA is a ubiquitous trimeric protein, homologous to the bacterial CutA1 protein that belongs to an operon involved in resistance to divalent ions ("copper tolerance A"). The function of this protein in plants and animals is unknown, and several hypotheses concerning its subcellular localization have been proposed. We analyzed the expression and the subcellular localization of mouse CutA variants, starting at three in-frame ATG codons, in transfected COS cells. We show that CutA produces 20-kDa (H) and 15-kDa (L) components. The H component is transferred into the secretory pathway and secreted, without cleavage of a signal peptide, whereas the L component is mostly cytosolic. We show that expression of the longer CutA variant reduces the level of AChE, that this effect depends on the AChE C-terminal peptides, and probably results from misfolding. Surprisingly, CutA increased the secretion of a mutant possessing a KDEL motif at its C terminus; it also increased the formation of AChE homotetramers. We found no evidence for a direct interaction between CutA and AChE. The longer CutA variant seems to affect the processing and trafficking of secretory proteins, whereas the shorter one may have a distinct function in the cytoplasm.
ESTHER : Liang_2009_J.Biol.Chem_284_5195
PubMedSearch : Liang_2009_J.Biol.Chem_284_5195
PubMedID: 19049969

Title : Old and new questions about cholinesterases - Massoulie_2008_Chem.Biol.Interact_175_30
Author(s) : Massoulie J , Perrier N , Noureddine H , Liang D , Bon S
Ref : Chemico-Biological Interactions , 175 :30 , 2008
Abstract : Cholinesterases have been intensively studied for a long time, but still offer many fascinating and fundamental questions regarding their evolution, activity, biosynthesis, folding, post-translational modifications, association with structural proteins (ColQ, PRiMA and maybe others), export or degradation. They constitute an excellent model to study these processes, particularly because of the sensitivity and specificity of enzymic assays. In addition, a number of provocative ideas concerning their proposed non-conventional, or non-catalytic functions deserve to be further documented.
ESTHER : Massoulie_2008_Chem.Biol.Interact_175_30
PubMedSearch : Massoulie_2008_Chem.Biol.Interact_175_30
PubMedID: 18541228