Epoxide hydrolases catalyze the cofactor-independent hydrolysis of reactive and toxic epoxides. They play an essential role in the detoxification of various xenobiotics in higher organisms and in the bacterial degradation of several environmental pollutants. The first x-ray structure of one of these, from Agrobacterium radiobacter AD1, has been determined by isomorphous replacement at 2.1-A resolution. The enzyme shows a two-domain structure with the core having the alpha/beta hydrolase-fold topology. The catalytic residues, Asp107 and His275, are located in a predominantly hydrophobic environment between the two domains. A tunnel connects the back of the active-site cavity with the surface of the enzyme and provides access to the active site for the catalytic water molecule, which in the crystal structure, has been found at hydrogen bond distance to His275. Because of a crystallographic contact, the active site has become accessible for the Gln134 side chain, which occupies a position mimicking a bound substrate. The structure suggests Tyr152/Tyr215 as the residues involved in substrate binding, stabilization of the transition state, and possibly protonation of the epoxide oxygen.
Haloalkane dehalogenase (DhlA) converts haloalkanes to their corresponding alcohols and halide ions. The rate-limiting step in the reaction of DhlA is the release of the halide ion. The kinetics of halide release have been analyzed by measuring halide binding with stopped-flow fluorescence experiments. At high halide concentrations, halide import occurs predominantly via the rapid formation of a weak initial collision complex, followed by transport of the ion to the active site. To obtain more insight in this collision complex, we determined the X-ray structure of DhlA in the presence of bromide and investigated the kinetics of mutants that were constructed on the basis of this structure. The X-ray structure revealed one bromide ion firmly bound in the active site and two bromide ions weakly bound on the surface of the enzyme. One of the weakly bound ions is close to Thr197 and Phe294, near the entrance of the earlier proposed tunnel for substrate import. Kinetic analysis of bromide import by the Thr197Ala and Phe294Ala mutants of DhlA at high halide concentration showed that the rate constants for halide binding no longer displayed a wild-type-like parabolic increase with increasing bromide concentrations. This is in agreement with an elimination or a decrease in affinity of the surface-located halide-binding site. Likewise, chloride binding kinetics of the mutants indicated significant differences with wild-type enzyme. The results indicate that Thr197 and Phe294 are involved in the formation of an initial collision complex for halide import in DhlA and provide experimental evidence for the role of the tunnel in substrate and product transport.
        
Title: Haloalkane dehalogenase from Xanthobacter autotrophicus GJ10 refined at 1.15 A resolution Ridder IS, Rozeboom HJ, Dijkstra BW Ref: Acta Crystallographica D Biol Crystallogr, 55:1273, 1999 : PubMed
Crystals of the 35 kDa protein haloalkane dehalogenase from Xanthobacter autotrophicus GJ10 diffract to 1.15 A resolution at cryogenic temperature using synchrotron radiation. Blocked anisotropic least-squares refinement with SHELXL gave a final conventional R factor of 10.51% for all reflections in the 15-1.15 A resolution range. The estimated r.m.s. errors of the model are 0.026 and 0.038 A for protein atoms and all atoms, respectively. The structure comprises all 310 amino acids, with 28 side chains and two peptide bonds in multiple conformations, two covalently linked Pb atoms, 601 water molecules, seven glycerol molecules, one sulfate ion and two chloride ions. Water molecules accounting for alternative solvent structure are modelled with a fixed occupancy of 0.5. The structure is described in detail and compared with previously reported dehalogenase structures refined at 1.9-2.3 A resolution. An analysis of the protein's geometry and stereochemistry reveals eight mean values of bond lengths and angles which deviate significantly from the Engh & Huber parameters, a wide spread in the main-chain omega torsion angle around its ideal value of 180 (6) degrees and a role for C-HcO interactions in satisfying the hydrogen-bond acceptor capacity of main-chain carbonyl O atoms in the central beta-sheet.
Haloalkane dehalogenase (DhlA) catalyzes the hydrolysis of haloalkanes via an alkyl-enzyme intermediate. Trp175 forms a halogen/halide-binding site in the active-site cavity together with Trp125. To get more insight in the role of Trp175 in DhlA, we mutated residue 175 and explored the kinetics and X-ray structure of the Trp175Tyr enzyme. The mutagenesis study indicated that an aromatic residue at position 175 is important for the catalytic performance of DhlA. Pre-steady-state kinetic analysis of Trp175Tyr-DhlA showed that the observed 6-fold increase of the Km for 1,2-dibromoethane (DBE) results from reduced rates of both DBE binding and cleavage of the carbon-bromine bond. Furthermore, the enzyme isomerization preceding bromide release became 4-fold faster in the mutant enzyme. As a result, the rate of hydrolysis of the alkyl-enzyme intermediate became the main determinant of the kcat for DBE, which was 2-fold higher than the wild-type kcat. The X-ray structure of the mutant enzyme at pH 6 showed that the backbone structure of the enzyme remains intact and that the tyrosine side chain lies in the same plane as Trp175 in the wild-type enzyme. The Clalpha-stabilizing aromatic rings of Tyr175 and Trp125 are 0.7 A further apart and due to the smaller size of the mutated residue, the volume of the cavity has increased by one-fifth. X-ray structures of mutant and wild-type enzyme at pH 5 demonstrated that the Tyr175 side chain rotated away upon binding of an acetic acid molecule, leaving one of its oxygen atoms hydrogen bonded to the indole nitrogen of Trp125 only. These structural changes indicate a weakened interaction between residue 175 and the halogen atom or halide ion in the active site and help to explain the kinetic changes induced by the Trp175Tyr mutation.
Conversion of halogenated aliphatics by haloalkane dehalogenase proceeds via the formation of a covalent alkyl-enzyme intermediate which is subsequently hydrolyzed by water. In the wild type enzyme, the slowest step for both 1,2-dichloroethane and 1,2-dibromoethane conversion is a unimolecular enzyme isomerization preceding rapid halide dissociation. Phenylalanine 172 is located in a helix-loop-helix structure that covers the active site cavity of the enzyme, interacts with the C1 beta of 1,2-dichloroethane during catalysis, and could be involved in stabilization of this helix-loop-helix region of the cap domain of the enzyme. To obtain more information about the role of this residue in dehalogenase function, we performed a mutational analysis of position 172 and studied the kinetics and X-ray structure of the Phe172Trp enzyme. The Phe172Trp mutant had a 10-fold higher Kcat/Km for 1-chlorohexane and a 2-fold higher Kcat for 1,2-dibromoethane than the wild-type enzyme. The X-ray structure of the Phe172Trp enzyme showed a local conformational change in the helix-loop-helix region that covers the active site. This could explain the elevated activity for 1-chlorohexane of the Phe172Trp enzyme, since it allows this large substrate to bind more easily in the active site cavity. Pre-steady-state kinetic analysis showed that the increase in Kcat found for 1,2-dibromoethane conversion could be attributed to an increase in the rate of an enzyme isomerization step that preceeds halide release. The observed conformational difference between the helix-loop-helix structures of the wild-type enzyme and the faster mutant suggests that the isomerization required for halide release could be a conformational change that takes place in this region of the cap domain of the dehalogenase. It is proposed that Phe172 is involved in stabilization of the helix-loop-helix structure that covers the active site of the enzyme and creates a rigid hydrophobic cavity for small apolar halogenated alkanes.