Orange thyme (Thymus fragrantissimus) is becoming widely used in food as a condiment and herbal tea, nevertheless its chemical composition and potential bioactivities are largely unknown. Thus the objective of this work is to obtain a detailed phytochemical profile of T. fragrantissimus by exhaustive ethanolic extraction and by aqueous decoction mimicking its consumption. Extracts showed high content in rosmarinic acid, luteolin-O-hexuronide and eriodictyol-O-hexuronide; these were the main phenolic compounds present in orange thyme accounting for 85% of the total phenolic compounds. Orange thyme extracts presented high scavenging activity against nitric oxide and superoxide radicals. Both extracts presented significant inhibitory effect of tyrosinase activity and moderate anti-acetylcholinesterase activity. Both extracts showed a good in vitro anti-inflammatory activity and a weak anti-proliferative/cytotoxic activity against Caco-2 and HepG2 cell lines supporting its safe use. Orange thyme is a very good source of bioactive compounds with potential use in different food and nutraceutical industries.
The nanotechnological approach is an innovative strategy of high potential to achieve reactivation of organophosphorus-inhibited acetylcholinesterase in central nervous system. It was previously shown that pralidoxime chloride-loaded solid lipid nanoparticles (2-PAM-SLNs) are able to protect the brain against pesticide (paraoxon) central toxicity. In the present work, we increased brain AChE reactivation efficacy by PEGylation of 2-PAM-SLNs using PEG-lipid N-(carbonyl-methoxypolyethylene glycol-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine, sodium salt) (DSPE-PEG(2000)) as a surface-modifier of SLNs. To perform pharmacokinetic study, a simple, sensitive (LLOQ 1.0 ng/ml) high-performance liquid chromatography tandem mass spectrometry with atmospheric pressure chemical ionization by multiple reaction monitoring mode (HPLC-APCI-MS) was developed. The method was compared to mass spectrometry with electrospray ionization. The method was validated for linearity, accuracy, precision, extraction recovery, matrix effect and stability. Acetophenone oxime was used as the internal standard for the quantification of 2-PAM in rat plasma and brain tissue after intravenous administration. 2-PAM-DSPE-PEG(2000)-SLNs of mean size about 80 nm (PDI = 0.26), zeta-potential of -55 mV and of high in vitro stability, prolonged the elimination phase of 2-PAM from the bloodstream more than 3 times compared to free 2-PAM. An increase in reactivation of POX-inhibited human brain acetylcholinesterase up to 36.08 +/- 4.3% after intravenous administration of 2-PAM-DSPE-PEG(2000)-SLNs (dose of 2-PAM is 5 mg/kg) was achieved. The result is one of the first examples where this level of brain acetylcholinesterase reactivation was achieved. Thus, the implementation of different approaches for targeting and modifying nanoparticles' surface gives hope for improving the antidotal treatment of organophosphorus poisoning by marketed reactivators.
New mixed cationic liposomes based on L-alpha-phosphatidylcholine and dihexadecylmethylhydroxyethylammonium bromide (DHDHAB) were designed to overcome the BBB crossing by using the intranasal route. Synthesis and self-assembly of DHDHAB were performed. A low critical association concentration (0.01 mM), good solubilization properties toward hydrophobic dye Orange OT and antimicrobial activity against gram-positive bacteria Staphylococcus aureus (MIC=7.8 mug mL(-1)) and Bacillus cereus (MIC=7.8 mug mL(-1)), low hemolytic activities against human red blood cells (less than 10%) were achieved. Conditions for preparation of cationic vesicles and mixed liposomes with excellent colloidal stability at room temperature were determined. The intranasal administration of rhodamine B-loaded cationic liposomes was shown to increase bioavailability into the brain in comparison to the intravenous injection. The cholinesterase reactivator, 2-PAM, was used as model drug for the loading in cationic liposomes. 2-PAM-loaded cationic liposomes displayed high encapsulation efficiency ( approximately 90%) and hydrodynamic diameter close to 100 nm. Intranasally administered 2-PAM-loaded cationic liposomes were effective against paraoxon-induced acetylcholinesterase inhibition in the brain. 2-PAM-loaded liposomes reactivated 12 +/- 1% of brain acetylcholinesterase. This promising result opens the possibility to use marketed positively charged oximes in medical countermeasures against organophosphorus poisoning for reactivation of central acetylcholinesterase by implementing a non-invasive approach, via the "nose-brain" pathway.
A novel approach for brain protection against poisoning by organophosphorus agents is developed based on the combination treatment of dual delivery of two oximes. Pralidoxime chloride (2-PAM) and a novel reactivator, 6-(5-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)pentyl)-3-hydroxy picolinaldehyde oxime (3-HPA), have been loaded in solid-lipid nanoparticles (SLNs) to offer distinct release profile and systemic half-life for both oximes. To increase the therapeutic time window of both oximes, SLNs with two different compartments were designed to load each respective drug. Oxime-loaded SLNs of hydrodynamic diameter between 100 and 160nm and negative zeta potential (-30 to -25mV) were stable for a period of 10months at 4 degrees C. SLNs displayed longer circulation time in the bloodstream compared to free 3-HPA and free 2-PAM. Oxime-loaded SLNs were suitable for intravenous (iv) administration. Paraoxon-poisoned rats (0.8xLD50) were treated with 3-HPA-loaded SLNs and 2-PAM+3-HPA-loaded SLNs at the dose of 3-HPA and 2-PAM of 5mg/kg. Brain AChE reactivation up to 30% was slowly achieved in 5h after administration of 3-HPA-SLNs. For combination therapy with two oximes, a time-dependent additivity and increased reactivation up to 35% were observed.
Solid lipid nanoparticles (SLNs) are among the most promising nanocarriers to target the blood-brain barrier (BBB) for drug delivery to the central nervous system (CNS). Encapsulation of the acetylcholinesterase reactivator, pralidoxime chloride (2-PAM), in SLNs appears to be a suitable strategy for protection against poisoning by organophosphorus agents (OPs) and postexposure treatment. 2-PAM-loaded SLNs were developed for brain targeting and delivery via intravenous (iv) administration. 2-PAM-SLNs displayed a high 2-PAM encapsulation efficiency ( approximately 90%) and loading capacity (maximum 30.8 +/- 1%). Drug-loaded particles had a mean hydrodynamic diameter close to 100 nm and high negative zeta potential (-54 to -15 mV). These properties contribute to improve long-term stability of 2-PAM-SLNs when stored both at room temperature (22 degrees C) and at 4 degrees C, as well as to longer circulation time in the bloodstream compared to free 2-PAM. Paraoxon-poisoned rats (2 x LD50) were treated with 2-PAM-loaded SLNs at a dose of 2-PAM of 5 mg/kg. 2-PAM-SLNs reactivated 15% of brain AChE activity. Our results confirm the potential use of SLNs loaded with positively charged oximes as a medical countermeasure both for protection against OPs poisoning and for postexposure treatment.