Triacylglycerol lipases (EC 3.1.1.3) catalyze both hydrolysis and synthesis reactions with a broad spectrum of substrates rendering them especially suitable for many biotechnological applications. Most lipases used today originate from mesophilic organisms and are susceptible to thermal denaturation whereas only few possess high thermotolerance. Here, we report on the identification and characterization of two novel thermostable bacterial lipases identified by functional metagenomic screenings. Metagenomic libraries were constructed from enrichment cultures maintained at 65 to 75 degrees C and screened resulting in the identification of initially 10 clones with lipolytic activities. Subsequently, two ORFs were identified encoding lipases, LipS and LipT. Comparative sequence analyses suggested that both enzymes are members of novel lipase families. LipS is a 30.2 kDa protein and revealed a half-life of 48 h at 70 degrees C. The lipT gene encoded for a multimeric enzyme with a half-life of 3 h at 70 degrees C. LipS had an optimum temperature at 70 degrees C and LipT at 75 degrees C. Both enzymes catalyzed hydrolysis of long-chain (C(12) and C(14)) fatty acid esters and additionally hydrolyzed a number of industry-relevant substrates. LipS was highly specific for (R)-ibuprofen-phenyl ester with an enantiomeric excess (ee) of 99%. Furthermore, LipS was able to synthesize 1-propyl laurate and 1-tetradecyl myristate at 70 degrees C with rates similar to those of the lipase CalB from Candida antarctica. LipS represents the first example of a thermostable metagenome-derived lipase with significant synthesis activities. Its X-ray structure was solved with a resolution of 1.99 A revealing an unusually compact lid structure.
        
Title: Engineering of Candida antarctica lipase B for hydrolysis of bulky carboxylic acid esters Juhl PB, Doderer K, Hollmann F, Thum O, Pleiss J Ref: J Biotechnol, 150:474, 2010 : PubMed
Candida antarctica lipase B (CALB) is a widely used biocatalyst with high activity and specificity for a wide range of primary and secondary alcohols. However, the range of converted carboxylic acids is more narrow and mainly limited to unbranched fatty acids. To further broaden the biotechnological applications of CALB it is of interest to expand the range of converted carboxylic acid and extend it to carboxylic acids that are branched or substituted in close proximity of the carboxyl group. An in silico library of 2400 CALB variants was built and screened in silico by substrate-imprinted docking, a four step docking procedure. First, reaction intermediates of putative substrates are covalently docked into enzyme active sites. Second, the geometry of the resulting enzyme-substrate complex is optimized. Third, the substrate is removed from the complex and then docked again into the optimized structure. Fourth, the resulting substrate poses are rated by geometric filter criteria as productive or non-productive poses. Eleven enzyme variants resulting from the in silico screening were expressed in Escherichia coli BL21 and measured in the hydrolysis of two branched fatty acid esters, isononanoic acid ethyl ester and 2-ethyl hexanoic acid ethyl esters. Five variants showed an initial increase in activity. The variant with the highest wet mass activity (T138S) was purified and further characterized. It showed a 5-fold increase in hydrolysis of isononanoic acid ethyl ester, but not toward sterically more demanding 2-ethyl hexanoic acid ethyl ester.