Austin_2018_Proc.Natl.Acad.Sci.U.S.A_115_E4350

Reference

Title : Characterization and engineering of a plastic-degrading aromatic polyesterase - Austin_2018_Proc.Natl.Acad.Sci.U.S.A_115_E4350
Author(s) : Austin HP , Allen MD , Donohoe BS , Rorrer NA , Kearns FL , Silveira RL , Pollard BC , Dominick G , Duman R , El Omari K , Mykhaylyk V , Wagner A , Michener WE , Amore A , Skaf MS , Crowley MF , Thorne AW , Johnson CW , Woodcock HL , McGeehan JE , Beckham GT
Ref : Proc Natl Acad Sci U S A , 115 :E4350 , 2018
Abstract :

Poly(ethylene terephthalate) (PET) is one of the most abundantly produced synthetic polymers and is accumulating in the environment at a staggering rate as discarded packaging and textiles. The properties that make PET so useful also endow it with an alarming resistance to biodegradation, likely lasting centuries in the environment. Our collective reliance on PET and other plastics means that this buildup will continue unless solutions are found. Recently, a newly discovered bacterium, Ideonella sakaiensis 201-F6, was shown to exhibit the rare ability to grow on PET as a major carbon and energy source. Central to its PET biodegradation capability is a secreted PETase (PET-digesting enzyme). Here, we present a 0.92 A resolution X-ray crystal structure of PETase, which reveals features common to both cutinases and lipases. PETase retains the ancestral alpha/beta-hydrolase fold but exhibits a more open active-site cleft than homologous cutinases. By narrowing the binding cleft via mutation of two active-site residues to conserved amino acids in cutinases, we surprisingly observe improved PET degradation, suggesting that PETase is not fully optimized for crystalline PET degradation, despite presumably evolving in a PET-rich environment. Additionally, we show that PETase degrades another semiaromatic polyester, polyethylene-2,5-furandicarboxylate (PEF), which is an emerging, bioderived PET replacement with improved barrier properties. In contrast, PETase does not degrade aliphatic polyesters, suggesting that it is generally an aromatic polyesterase. These findings suggest that additional protein engineering to increase PETase performance is realistic and highlight the need for further developments of structure/activity relationships for biodegradation of synthetic polyesters.

PubMedSearch : Austin_2018_Proc.Natl.Acad.Sci.U.S.A_115_E4350
PubMedID: 29666242
Gene_locus related to this paper: idesa-peth

Related information

Inhibitor Terephthalic-acid    MHET
Substrate Terephthalic-acid    MHET    Polyethylene-2,5-furandicarboxylate    HEMT    MHET    BHET    Polyethylene-terephthalate
Gene_locus Terephthalic-acid    MHET    Polyethylene-2,5-furandicarboxylate    HEMT    MHET    BHET    Polyethylene-terephthalate    idesa-peth
Family Terephthalic-acid    MHET    Polyethylene-2,5-furandicarboxylate    HEMT    MHET    BHET    Polyethylene-terephthalate    idesa-peth    Polyesterase-lipase-cutinase
Structure Terephthalic-acid    MHET    Polyethylene-2,5-furandicarboxylate    HEMT    MHET    BHET    Polyethylene-terephthalate    idesa-peth    Polyesterase-lipase-cutinase    6EQD    6EQE    6EQF    6EQH    6EQG
Chemical Terephthalic-acid    MHET    Polyethylene-2,5-furandicarboxylate    HEMT    MHET    BHET    Polyethylene-terephthalate    idesa-peth    Polyesterase-lipase-cutinase    6EQD    6EQE    6EQF    6EQH    6EQG    Ethylene-glycol    Terephthalic-acid

Citations formats

Austin HP, Allen MD, Donohoe BS, Rorrer NA, Kearns FL, Silveira RL, Pollard BC, Dominick G, Duman R, El Omari K, Mykhaylyk V, Wagner A, Michener WE, Amore A, Skaf MS, Crowley MF, Thorne AW, Johnson CW, Woodcock HL, McGeehan JE, Beckham GT (2018)
Characterization and engineering of a plastic-degrading aromatic polyesterase
Proc Natl Acad Sci U S A 115 :E4350

Austin HP, Allen MD, Donohoe BS, Rorrer NA, Kearns FL, Silveira RL, Pollard BC, Dominick G, Duman R, El Omari K, Mykhaylyk V, Wagner A, Michener WE, Amore A, Skaf MS, Crowley MF, Thorne AW, Johnson CW, Woodcock HL, McGeehan JE, Beckham GT (2018)
Proc Natl Acad Sci U S A 115 :E4350