Kronman_1994_J.Biol.Chem_269_27819

Reference

Title : The back door hypothesis for product clearance in acetylcholinesterase challenged by site-directed mutagenesis - Kronman_1994_J.Biol.Chem_269_27819
Author(s) : Kronman C , Ordentlich A , Barak D , Velan B , Shafferman A
Ref : Journal of Biological Chemistry , 269 :27819 , 1994
Abstract :

The active site of acetylcholinesterase is near the bottom of a long and narrow gorge. The dimensions of the gorge and the strong electrostatic field generated by the enzyme appear inconsistent with the enzyme's high turnover rate. Consequently, a "back door" mechanism involving movement of the reaction products through a transient opening near the active center was recently suggested. We investigated this hypothesis in human acetylcholinesterase by testing mutants at key residues (Glu-84, Trp-86, Asp-131, and Val-132) located near or along the putative back door channel. The turnover rates of all mutants tested, and in particular of V132K, where the channel is expected to be sealed by salt bridge Lys-132-Glu-452, are similar to that of the wild type enzyme. This indicates that the proposed back door is not a route for product clearance from the active site gorge of acetylcholinesterase and is probably of no functional relevance to its catalytic activity.

PubMedSearch : Kronman_1994_J.Biol.Chem_269_27819
PubMedID: 7961709

Related information

Citations formats

Kronman C, Ordentlich A, Barak D, Velan B, Shafferman A (1994)
The back door hypothesis for product clearance in acetylcholinesterase challenged by site-directed mutagenesis
Journal of Biological Chemistry 269 :27819

Kronman C, Ordentlich A, Barak D, Velan B, Shafferman A (1994)
Journal of Biological Chemistry 269 :27819