Muller_2011_Toxicol.Lett_200_53

Reference

Title : In vitro detoxification of cyclosarin (GF) by modified cyclodextrins - Muller_2011_Toxicol.Lett_200_53
Author(s) : Muller S , Koller M , Le Provost R , Lafont O , Estour F , Wille T , Thiermann H , Worek F , Reiter G
Ref : Toxicol Lett , 200 :53 , 2011
Abstract :

Developing potent detoxification strategies for prophylaxis and therapy against organophosphate (OP) intoxication still represents a challenging task. Clinical application of numerous investigated substances including enzymes and low molecular scavengers like metal ions or nucleophiles could not yet be realised due to profound disadvantages. Presenting a promising attempt, cyclodextrins (CDs) efficiently enhance the degradation of some organophosphorus compounds. The present study examined the in vitro GF degradation mediated by three CDs and a nucleophilic precursor performed by mass spectrometric detection with ammonia chemical ionisation. All four compounds caused a notable enhancement of GF detoxification that was synergistically accelerated in the case of 2-O-(3-carboxy-4-iodosobenzyl)-beta-cyclodextrin (IBA-beta-CD) with the alpha-nucleophile 2-iodosobenzoic acid (IBA) grafted on the secondary face of beta-cyclodextrin (beta-CD). In vitro toxicokinetic investigations of CD derivatives are needed to evaluate the effect of slow terminal elimination phase of the more toxic (-)-GF shown for two CD-derivatives underlining the necessity of detecting the complete kinetic course of inactivation. The observed effect of fast high affinity binding (20-30%) represents an additional therapeutic option of an extremely rapid reduction of GF concentration in vivo. Distinctive differences in the course of reaction are detected depending on beta-CD-derivatives, allowing a first inference of possible mechanisms and relevance of attached substituents. However, further profound investigation needs to be done to evaluate the basis of a clinical application of substituted CDs as potential detoxification agents.

PubMedSearch : Muller_2011_Toxicol.Lett_200_53
PubMedID: 21035528

Related information

Citations formats

Muller S, Koller M, Le Provost R, Lafont O, Estour F, Wille T, Thiermann H, Worek F, Reiter G (2011)
In vitro detoxification of cyclosarin (GF) by modified cyclodextrins
Toxicol Lett 200 :53

Muller S, Koller M, Le Provost R, Lafont O, Estour F, Wille T, Thiermann H, Worek F, Reiter G (2011)
Toxicol Lett 200 :53