Stojan_2002_Eur.J.Biochem_269_1154

Reference

Title : Concentration-dependent reversible activation-inhibition of human butyrylcholinesterase by tetraethylammonium ion - Stojan_2002_Eur.J.Biochem_269_1154
Author(s) : Stojan J , Golicnik M , Froment MT , Estour F , Masson P
Ref : European Journal of Biochemistry , 269 :1154 , 2002
Abstract : Tetraalkylammonium (TAA) salts are well known reversible inhibitors of cholinesterases. However, at concentrations around 10 mm, they have been found to activate the hydrolysis of positively charged substrates, catalyzed by wild-type human butyrylcholinesterase (EC 3.1.1.8) [Erdoes, E.G., Foldes, F.F., Zsigmond, E.K., Baart, N. & Zwartz, J.A. (1958) Science 128, 92]. The present study was undertaken to determine whether the peripheral anionic site (PAS) of human BCHE (Y332, D70) and/or the catalytic substrate binding site (CS) (W82, A328) are involved in this phenomenon. For this purpose, the kinetics of butyrylthiocholine (BTC) hydrolysis by wild-type human BCHE, by selected mutants and by horse BCHE was carried out at 25 degreeC and pH 7.0 in the presence of tetraethylammonium (TEA). It appears that human enzymes with more intact structure of the PAS show more prominent activation phenomenon. The following explanation has been put forward: TEA competes with the substrate at the peripheral site thus inhibiting the substrate hydrolysis at the CS. As the inhibition by TEA is less effective than the substrate inhibition itself, it mimics activation. At the concentrations around 40 mm, well within the range of TEA competition at both substrate binding sites, it lowers the activity of all tested enzymes.
ESTHER : Stojan_2002_Eur.J.Biochem_269_1154
PubMedSearch : Stojan_2002_Eur.J.Biochem_269_1154
PubMedID: 11856351

Related information

Citations formats

Stojan J, Golicnik M, Froment MT, Estour F, Masson P (2002)
Concentration-dependent reversible activation-inhibition of human butyrylcholinesterase by tetraethylammonium ion
European Journal of Biochemistry 269 :1154

Stojan J, Golicnik M, Froment MT, Estour F, Masson P (2002)
European Journal of Biochemistry 269 :1154