Wang_2013_Cell.Res_23_986

Reference

Title : Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4 - Wang_2013_Cell.Res_23_986
Author(s) : Wang N , Shi X , Jiang L , Zhang S , Wang D , Tong P , Guo D , Fu L , Cui Y , Liu X , Arledge KC , Chen YH , Zhang L , Wang X
Ref : Cell Res , 23 :986 , 2013
Abstract :

The spike glycoprotein (S) of recently identified Middle East respiratory syndrome coronavirus (MERS-CoV) targets the cellular receptor, dipeptidyl peptidase 4 (DPP4). Sequence comparison and modeling analysis have revealed a putative receptor-binding domain (RBD) on the viral spike, which mediates this interaction. We report the 3.0 A-resolution crystal structure of MERS-CoV RBD bound to the extracellular domain of human DPP4. Our results show that MERS-CoV RBD consists of a core and a receptor-binding subdomain. The receptor-binding subdomain interacts with DPP4 beta-propeller but not its intrinsic hydrolase domain. MERS-CoV RBD and related SARS-CoV RBD share a high degree of structural similarity in their core subdomains, but are notably divergent in the receptor-binding subdomain. Mutagenesis studies have identified several key residues in the receptor-binding subdomain that are critical for viral binding to DPP4 and entry into the target cell. The atomic details at the interface between MERS-CoV RBD and DPP4 provide structural understanding of the virus and receptor interaction, which can guide development of therapeutics and vaccines against MERS-CoV infection.

PubMedSearch : Wang_2013_Cell.Res_23_986
PubMedID: 23835475
Gene_locus related to this paper: human-DPP4

Related information

Gene_locus human-DPP4
Family DPP4N_Peptidase_S9
Structure 4L72

Citations formats

Wang N, Shi X, Jiang L, Zhang S, Wang D, Tong P, Guo D, Fu L, Cui Y, Liu X, Arledge KC, Chen YH, Zhang L, Wang X (2013)
Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4
Cell Res 23 :986

Wang N, Shi X, Jiang L, Zhang S, Wang D, Tong P, Guo D, Fu L, Cui Y, Liu X, Arledge KC, Chen YH, Zhang L, Wang X (2013)
Cell Res 23 :986