Yang_2023_Nat.Commun_14_1645

Reference

Title : Complete bio-degradation of poly(butylene adipate-co-terephthalate) via engineered cutinases - Yang_2023_Nat.Commun_14_1645
Author(s) : Yang Y , Min J , Xue T , Jiang P , Liu X , Peng R , Huang JW , Qu Y , Li X , Ma N , Tsai FC , Dai L , Zhang Q , Liu Y , Chen CC , Guo RT
Ref : Nat Commun , 14 :1645 , 2023
Abstract :

Poly(butylene adipate-co-terephthalate) (PBAT), a polyester made of terephthalic acid (TPA), 1,4-butanediol, and adipic acid, is extensively utilized in plastic production and has accumulated globally as environmental waste. Biodegradation is an attractive strategy to manage PBAT, but an effective PBAT-degrading enzyme is required. Here, we demonstrate that cutinases are highly potent enzymes that can completely decompose PBAT films in 48 h. We further show that the engineered cutinases, by applying a double mutation strategy to render a more flexible substrate-binding pocket exhibit higher decomposition rates. Notably, these variants produce TPA as a major end-product, which is beneficial feature for the future recycling economy. The crystal structures of wild type and double mutation of a cutinase from Thermobifida fusca in complex with a substrate analogue are also solved, elucidating their substrate-binding modes. These structural and biochemical analyses enable us to propose the mechanism of cutinase-mediated PBAT degradation.

PubMedSearch : Yang_2023_Nat.Commun_14_1645
PubMedID: 36964144
Gene_locus related to this paper: idesa-peth , thefu-q6a0i4

Related information

Inhibitor Terephthalic-acid    MHET
Substrate ETETETE    MHET    PBAT
Gene_locus idesa-peth    thefu-q6a0i4
Structure 7XTU    7XTR    7XTS    7XTT    7XTV    7XTW

Citations formats

Yang Y, Min J, Xue T, Jiang P, Liu X, Peng R, Huang JW, Qu Y, Li X, Ma N, Tsai FC, Dai L, Zhang Q, Liu Y, Chen CC, Guo RT (2023)
Complete bio-degradation of poly(butylene adipate-co-terephthalate) via engineered cutinases
Nat Commun 14 :1645

Yang Y, Min J, Xue T, Jiang P, Liu X, Peng R, Huang JW, Qu Y, Li X, Ma N, Tsai FC, Dai L, Zhang Q, Liu Y, Chen CC, Guo RT (2023)
Nat Commun 14 :1645