Yao_2019_Am.J.Physiol.Gastrointest.Liver.Physiol_316_G527

Reference

Title : Inhibition of soluble epoxide hydrolase ameliorates hyperhomocysteinemia-induced hepatic steatosis by enhancing beta-oxidation of fatty acid in mice - Yao_2019_Am.J.Physiol.Gastrointest.Liver.Physiol_316_G527
Author(s) : Yao L , Cao B , Cheng Q , Cai W , Ye C , Liang J , Liu W , Tan L , Yan M , Li B , He J , Hwang SH , Zhang X , Wang C , Ai D , Hammock BD , Zhu Y
Ref : American Journal of Physiology Gastrointest Liver Physiol , 316 :G527 , 2019
Abstract :

Hepatic steatosis is the beginning phase of nonalcoholic fatty liver disease, and hyperhomocysteinemia (HHcy) is a significant risk factor. Soluble epoxide hydrolase (sEH) hydrolyzes epoxyeicosatrienoic acids (EETs) and other epoxy fatty acids, attenuating their cardiovascular protective effects. However, the involvement of sEH in HHcy-induced hepatic steatosis is unknown. The current study aimed to explore the role of sEH in HHcy-induced lipid disorder. We fed 6-wk-old male mice a chow diet or 2% (wt/wt) high-metnionine diet for 8 wk to establish the HHcy model. A high level of homocysteine induced lipid accumulation in vivo and in vitro, which was concomitant with the increased activity and expression of sEH. Treatment with a highly selective specific sEH inhibitor (0.8 mg.kg(-1).day(-1) for the animal model and 1 muM for cells) prevented HHcy-induced lipid accumulation in vivo and in vitro. Inhibition of sEH activated the peroxisome proliferator-activated receptor-alpha (PPAR-alpha), as evidenced by elevated beta-oxidation of fatty acids and the expression of PPAR-alpha target genes in HHcy-induced hepatic steatosis. In primary cultured hepatocytes, the effect of sEH inhibition on PPAR-alpha activation was further confirmed by a marked increase in PPAR-response element luciferase activity, which was reversed by knock down of PPAR-alpha. Of note, 11,12-EET ligand dependently activated PPAR-alpha. Thus increased sEH activity is a key determinant in the pathogenesis of HHcy-induced hepatic steatosis, and sEH inhibition could be an effective treatment for HHcy-induced hepatic steatosis. NEW & NOTEWORTHY In the current study, we demonstrated that upregulation of soluble epoxide hydrolase (sEH) is involved in the hyperhomocysteinemia (HHcy)-caused hepatic steatosis in an HHcy mouse model and in murine primary hepatocytes. Improving hepatic steatosis in HHcy mice by pharmacological inhibition of sEH to activate peroxisome proliferator-activated receptor-alpha was ligand dependent, and sEH could be a potential therapeutic target for the treatment of nonalcoholic fatty liver disease.

PubMedSearch : Yao_2019_Am.J.Physiol.Gastrointest.Liver.Physiol_316_G527
PubMedID: 30789748

Related information

Inhibitor TPPU

Citations formats

Yao L, Cao B, Cheng Q, Cai W, Ye C, Liang J, Liu W, Tan L, Yan M, Li B, He J, Hwang SH, Zhang X, Wang C, Ai D, Hammock BD, Zhu Y (2019)
Inhibition of soluble epoxide hydrolase ameliorates hyperhomocysteinemia-induced hepatic steatosis by enhancing beta-oxidation of fatty acid in mice
American Journal of Physiology Gastrointest Liver Physiol 316 :G527

Yao L, Cao B, Cheng Q, Cai W, Ye C, Liang J, Liu W, Tan L, Yan M, Li B, He J, Hwang SH, Zhang X, Wang C, Ai D, Hammock BD, Zhu Y (2019)
American Journal of Physiology Gastrointest Liver Physiol 316 :G527