Yao_2022_Plant.J_111_117

Reference

Title : Insights into acylation mechanisms: co-expression of serine carboxypeptidase-like acyltransferases and their non-catalytic companion paralogs - Yao_2022_Plant.J_111_117
Author(s) : Yao S , Liu Y , Zhuang J , Zhao Y , Dai X , Jiang C , Wang Z , Jiang X , Zhang S , Qian Y , Tai Y , Wang Y , Wang H , Xie DY , Gao L , Xia T
Ref : Plant J , 111 :117 , 2022
Abstract :

Serine carboxypeptidase-like acyltransferases (SCPL-ATs) play a vital role in the diversification of plant metabolites. Galloylated flavan-3-ols highly accumulate in tea (Camellia sinensis), grape (Vitis vinifera), and persimmon (Diospyros kaki). To date, the biosynthetic mechanism of these compounds remains unknown. Herein, we report that two SCPL-AT paralogs are involved in galloylation of flavan-3-ols: CsSCPL4, which contains the conserved catalytic triad S-D-H, and CsSCPL5, which has the alternative triad T-D-Y. Integrated data from transgenic plants, recombinant enzymes, and gene mutations showed that CsSCPL4 is a catalytic acyltransferase, while CsSCPL5 is a non-catalytic companion paralog (NCCP). Co-expression of CsSCPL4 and CsSCPL5 is likely responsible for the galloylation. Furthermore, pull-down and co-immunoprecipitation assays showed that CsSCPL4 and CsSCPL5 interact, increasing protein stability and promoting post-translational processing. Moreover, phylogenetic analyses revealed that their homologs co-exist in galloylated flavan-3-ol- or hydrolyzable tannin-rich plant species. Enzymatic assays further revealed the necessity of co-expression of those homologs for acyltransferase activity. Evolution analysis revealed that the mutations of the CsSCPL5 catalytic residues may have taken place about 10 million years ago. These findings show that the co-expression of SCPL-ATs and their NCCPs contributes to the acylation of flavan-3-ols in the plant kingdom.

PubMedSearch : Yao_2022_Plant.J_111_117
PubMedID: 35437852
Gene_locus related to this paper: dioka-dkSCPL1 , camsi-SCPL5 , camsi-SCPL4

Related information

Gene_locus dioka-dkSCPL1    camsi-SCPL5    camsi-SCPL4
Family Carboxypeptidase_S10

Citations formats

Yao S, Liu Y, Zhuang J, Zhao Y, Dai X, Jiang C, Wang Z, Jiang X, Zhang S, Qian Y, Tai Y, Wang Y, Wang H, Xie DY, Gao L, Xia T (2022)
Insights into acylation mechanisms: co-expression of serine carboxypeptidase-like acyltransferases and their non-catalytic companion paralogs
Plant J 111 :117

Yao S, Liu Y, Zhuang J, Zhao Y, Dai X, Jiang C, Wang Z, Jiang X, Zhang S, Qian Y, Tai Y, Wang Y, Wang H, Xie DY, Gao L, Xia T (2022)
Plant J 111 :117