Nelson MN

References (2)

Title : A comprehensive draft genome sequence for lupin (Lupinus angustifolius), an emerging health food: insights into plant-microbe interactions and legume evolution - Hane_2017_Plant.Biotechnol.J_15_318
Author(s) : Hane JK , Ming Y , Kamphuis LG , Nelson MN , Garg G , Atkins CA , Bayer PE , Bravo A , Bringans S , Cannon S , Edwards D , Foley R , Gao LL , Harrison MJ , Huang W , Hurgobin B , Li S , Liu CW , McGrath A , Morahan G , Murray J , Weller J , Jian J , Singh KB
Ref : Plant Biotechnol J , 15 :318 , 2017
Abstract : Lupins are important grain legume crops that form a critical part of sustainable farming systems, reducing fertilizer use and providing disease breaks. It has a basal phylogenetic position relative to other crop and model legumes and a high speciation rate. Narrow-leafed lupin (NLL; Lupinus angustifolius L.) is gaining popularity as a health food, which is high in protein and dietary fibre but low in starch and gluten-free. We report the draft genome assembly (609 Mb) of NLL cultivar Tanjil, which has captured >98% of the gene content, sequences of additional lines and a dense genetic map. Lupins are unique among legumes and differ from most other land plants in that they do not form mycorrhizal associations. Remarkably, we find that NLL has lost all mycorrhiza-specific genes, but has retained genes commonly required for mycorrhization and nodulation. In addition, the genome also provided candidate genes for key disease resistance and domestication traits. We also find evidence of a whole-genome triplication at around 25 million years ago in the genistoid lineage leading to Lupinus. Our results will support detailed studies of legume evolution and accelerate lupin breeding programmes.
ESTHER : Hane_2017_Plant.Biotechnol.J_15_318
PubMedSearch : Hane_2017_Plant.Biotechnol.J_15_318
PubMedID: 27557478
Gene_locus related to this paper: lupan-a0a1j7h2u5 , lupan-a0a4p1r201 , lupan-a0a4p1rve4 , lupan-a0a1j7inr2 , lupan-a0a4p1rbl4 , lupan-a0a1j7ifk4 , lupan-a0a4p1rs77 , lupan-a0a1j7h5s4

Title : Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea - Parkin_2014_Genome.Biol_15_R77
Author(s) : Parkin IA , Koh C , Tang H , Robinson SJ , Kagale S , Clarke WE , Town CD , Nixon J , Krishnakumar V , Bidwell SL , Denoeud F , Belcram H , Links MG , Just J , Clarke C , Bender T , Huebert T , Mason AS , Pires JC , Barker G , Moore J , Walley PG , Manoli S , Batley J , Edwards D , Nelson MN , Wang X , Paterson AH , King G , Bancroft I , Chalhoub B , Sharpe AG
Ref : Genome Biol , 15 :R77 , 2014
Abstract : BACKGROUND: Brassica oleracea is a valuable vegetable species that has contributed to human health and nutrition for hundreds of years and comprises multiple distinct cultivar groups with diverse morphological and phytochemical attributes. In addition to this phenotypic wealth, B. oleracea offers unique insights into polyploid evolution, as it results from multiple ancestral polyploidy events and a final Brassiceae-specific triplication event. Further, B. oleracea represents one of the diploid genomes that formed the economically important allopolyploid oilseed, Brassica napus. A deeper understanding of B. oleracea genome architecture provides a foundation for crop improvement strategies throughout the Brassica genus.
RESULTS: We generate an assembly representing 75% of the predicted B. oleracea genome using a hybrid Illumina/Roche 454 approach. Two dense genetic maps are generated to anchor almost 92% of the assembled scaffolds to nine pseudo-chromosomes. Over 50,000 genes are annotated and 40% of the genome predicted to be repetitive, thus contributing to the increased genome size of B. oleracea compared to its close relative B. rapa. A snapshot of both the leaf transcriptome and methylome allows comparisons to be made across the triplicated sub-genomes, which resulted from the most recent Brassiceae-specific polyploidy event.
CONCLUSIONS: Differential expression of the triplicated syntelogs and cytosine methylation levels across the sub-genomes suggest residual marks of the genome dominance that led to the current genome architecture. Although cytosine methylation does not correlate with individual gene dominance, the independent methylation patterns of triplicated copies suggest epigenetic mechanisms play a role in the functional diversification of duplicate genes.
ESTHER : Parkin_2014_Genome.Biol_15_R77
PubMedSearch : Parkin_2014_Genome.Biol_15_R77
PubMedID: 24916971
Gene_locus related to this paper: braol-a0a0d3dpb2 , braol-a0a0d3dx76 , brana-a0a078jxa8 , brana-a0a078i2k3 , braol-a0a0d3ef55 , braol-a0a0d3bur9 , braol-a0a0d3ck99 , braol-a0a0d3cns1 , braol-a0a0d3e654 , brana-a0a078i6d2 , braol-a0a0d3a922