Petukhova EO

References (3)

Title : Novel Acetylcholinesterase Inhibitors Based on Uracil Moiety for Possible Treatment of Alzheimer Disease - Semenov_2020_Molecules_25_
Author(s) : Semenov VE , Zueva IV , Mukhamedyarov MA , Lushchekina SV , Petukhova EO , Gubaidullina LM , Krylova ES , Saifina LF , Lenina OA , Petrov KA
Ref : Molecules , 25 : , 2020
Abstract : In this study, novel derivatives based on 6-methyluracil and condensed uracil were synthesized, namely, 2,4-quinazoline-2,4-dione with w-(ortho-nitrilebenzylethylamino) alkyl chains at the N atoms of the pyrimidine ring. In this series of synthesized compounds, the polymethylene chains were varied from having tetra- to hexamethylene chains, and secondary NH, tertiary ethylamino, and quaternary ammonium groups were introduced into the chains. The molecular modeling of the compounds indicated that they could function as dual binding site acetylcholinesterase inhibitors, binding to both the peripheral anionic site and active site. The data from in vitro experiments show that the most active compounds exhibit affinity toward acetylcholinesterase within a nanomolar range, with selectivity for acetylcholinesterase over butyrylcholinesterase reaching four orders of magnitude. In vivo biological assays demonstrated the potency of these compounds in the treatment of memory impairment using an animal model of Alzheimer disease.
ESTHER : Semenov_2020_Molecules_25_
PubMedSearch : Semenov_2020_Molecules_25_
PubMedID: 32932702

Title : 6-Methyluracil derivatives as acetylcholinesterase inhibitors for treatment of Alzheimer's disease - Zueva_2015_Int.J.Risk.Saf.Med_27 Suppl 1_S69
Author(s) : Zueva IV , Semenov VE , Mukhamedyarov MA , Lushchekina SV , Kharlamova AD , Petukhova EO , Mikhailov AS , Podyachev SN , Saifina LF , Petrov KA , Minnekhanova OA , Zobov VV , Nikolsky EE , Masson P , Reznik VS
Ref : Int J Risk Saf Med , 27 Suppl 1 :S69 , 2015
Abstract : BACKGROUND: Alzheimer's disease (AD) is the major age-related progressive neurodegenerative disorder. The brain of AD patients suffers from loss of cholinergic neurons and decreased number of synapses [1]. AD is caused by an imbalance between Abeta production and clearance, resulting in increased amount of Abeta in various forms [2]. Reduction of Abeta production and increasing clearance of Abeta pathogenic forms are key targets in the development of potential therapeutic agents for AD treatment. Unfortunately, only nosotropic approaches for treatment of AD are currently effective in humans. These approaches mainly focus on the inhibition of brain acetyl-cholinesterase (AChE) to increase lifetime of cerebral acetylcholine [3]. It is important to emphasize that AChE itself promotes the formation of Abeta fibrils in vitro and Abeta plaques in the cerebral cortex of transgenic mouse models of AD [4]. This property of AChE results from interaction between Abeta and the peripheral anionic site of the enzyme (PAS) [5]. Dual binding site inhibitors of both catalytic active site (CAS) and PAS can simultaneously improve cognition and slow down the rate of Abeta-induced neural degeneration. Unfortunately, the assortment of AChE PAS ligands is still extremely limited. OBJECTIVE: To study putative advantages of AChE non-charged PAS inhibitors based on 6-methyluracil derivatives for the treatment of Alzheimer's disease.
METHODS: In vitro studies. Concentration of drug producing 50% of AChE/BuChE activity inhibition (IC50) was measured using the method of Ellman et al. [6]. Toxicological experiments were performed using IP injection of the different compounds in mice. LD50, dose (in mg/kg) causing lethal effects in 50% of animals was taken as a criterion of toxicity [7]. The ability of compound to block in vitro AChE-induced Abeta1-40 aggregation was studied using a thioflavin T (ThT) fluorescent probe [8].In vivo biological assays. For in vivo blood-brain barrier permeation assay brains were removed 30 min after IP injection of LD50 dose of tested compound injection. The inhibitory potency was measured using the method of Ellman.Scopolamine and transgenic models of AD were used to evaluate the influence of compound 35 on spatial memory performance.Water solution of scopolamine was injected to mice (ip) 20 minutes before starting memory test during 14 days [9]. Mice were assigned to 7 groups, including 4 groups receiving injection (ip) of compound in different dosages, donepezil-treated mice (donepezil is conventionally used to treat Alzheimer's disease), positive and negative control groups. Double transgenic (APP/PS1) mice expressing a chimeric mouse/human amyloid precursor protein and a mutant of human presenilin-1 [10] were assigned to 4 groups, including transgenic animals injected (ip) with compound 35 or donepezil solution, positive (transgenes injected with water) and negative (wild-type mice) controls.To evaluate spatial memory performance, mice were trained on a reward alternation task using a conventional T-maze [11]. The criterion for a mouse having learned the rewarded alternation task was 3 consecutive days of at least 5 correct responses out of the 6 free trials.For beta-amyloid peptide load was evaluated quantitatively as a number and summary area of Thioflavine S fluorescent spots in cerebral cortex and hippocampal images using Image J program. Statistical analyses were performed using the Mann-Whitney test.
RESULTS: We evaluated the acute toxicity of the most active compounds. The most potent AChE inhibitor compound 35 (IC50 (AChE) = 5 +/- 0.5 nM) exhibited the lowest LD50 values (51 mg/kg) and inhibited brain AChE by more than 71 +/- 1%. Compound 35 at 10 nM, exhibited a significant (35 +/- 9%) inhibitory activity toward human AChE-induced Abeta aggregation.Scopolamine injection induced significant decrease in correct choice percentage in T-maze, as well as decrease in percentage of mice reaching criterion for learning the task by day 14. This memory deficit was relieved to some extent either by compound 35 (5 mg/kg) or donepezil (reference compound) treatment (0.75 mg/kg). Interestingly, higher doses of compound 35 (10 and 15 mg/kg) produced less therapeutic effect on spatial memory deficit.Group of APP/PS1 mice showed 3 times lower percentage of reaching behavioral criterion and lower percentage of correct choice in T-maze alternation task comparing to WT mice, whereas compound 35 (5 mg/kg) or Donepezil treatment effectively improved these parameters in APP/PS1 mice.Compound 35 treatment (5 mg/kg) during 14 days significantly reduced percentage of summary area and number of beta-amyloid peptide (betaAP) deposits visualized in sections of cerebral cortex, dentate gyrus, and hippocampal CA3 area in APP/PS1 mice. The most prominent reduction of betaAP load by compound 35 treatment was found in CA3 area and cerebral cortex. Meanwhile, Donepezil treatment (1 mg/kg) during 14 days significantly reduced betaAP load in cerebral cortex but not in dentate gyrus and CA3 area.
CONCLUSIONS: Experiments showed that the most potent AChE inhibitor compound 35 (6-methyluracil derivative) permeated the blood-brain barrier, improved working memory in the APP/PS1 transgenic mice and significantly reduced the number and area of Abeta plaques in the brain. Thus, compound 35 is a promising candidate as a bi-functional inhibitor of AChE for treatment of AD.
ESTHER : Zueva_2015_Int.J.Risk.Saf.Med_27 Suppl 1_S69
PubMedSearch : Zueva_2015_Int.J.Risk.Saf.Med_27 Suppl 1_S69
PubMedID: 26639718

Title : 6-Methyluracil Derivatives as Bifunctional Acetylcholinesterase Inhibitors for the Treatment of Alzheimer's Disease - Semenov_2015_ChemMedChem_10_1863
Author(s) : Semenov VE , Zueva IV , Mukhamedyarov MA , Lushchekina SV , Kharlamova AD , Petukhova EO , Mikhailov AS , Podyachev SN , Saifina LF , Petrov KA , Minnekhanova OA , Zobov VV , Nikolsky EE , Masson P , Reznik VS
Ref : ChemMedChem , 10 :1863 , 2015
Abstract : Novel 6-methyluracil derivatives with omega-(substituted benzylethylamino)alkyl chains at the nitrogen atoms of the pyrimidine ring were designed and synthesized. The numbers of methylene groups in the alkyl chains were varied along with the electron-withdrawing substituents on the benzyl rings. The compounds are mixed-type reversible inhibitors of cholinesterases, and some of them show remarkable selectivity for human acetylcholinesterase (hAChE), with inhibitory potency in the nanomolar range, more than 10 000-fold higher than that for human butyrylcholinesterase (hBuChE). Molecular modeling studies indicate that these compounds are bifunctional AChE inhibitors, spanning the enzyme active site gorge and binding to its peripheral anionic site (PAS). In vivo experiments show that the 6-methyluracil derivatives are able to penetrate the blood-brain barrier (BBB), inhibiting brain-tissue AChE. The most potent AChE inhibitor, 3 d (1,3-bis[5-(o-nitrobenzylethylamino)pentyl]-6-methyluracil), was found to improve working memory in scopolamine and transgenic APP/PS1 murine models of Alzheimer's disease, and to significantly decrease the number and area of beta-amyloid peptide plaques in the brain.
ESTHER : Semenov_2015_ChemMedChem_10_1863
PubMedSearch : Semenov_2015_ChemMedChem_10_1863
PubMedID: 26412714