Moran_2004_Nature_432_910

Reference

Title : Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment - Moran_2004_Nature_432_910
Author(s) : Moran MA , Buchan A , Gonzalez JM , Heidelberg JF , Whitman WB , Kiene RP , Henriksen JR , King GM , Belas R , Fuqua C , Brinkac L , Lewis M , Johri S , Weaver B , Pai G , Eisen JA , Rahe E , Sheldon WM , Ye W , Miller TR , Carlton J , Rasko DA , Paulsen IT , Ren Q , Daugherty SC , DeBoy RT , Dodson RJ , Durkin AS , Madupu R , Nelson WC , Sullivan SA , Rosovitz MJ , Haft DH , Selengut J , Ward N
Ref : Nature , 432 :910 , 2004
Abstract :

Since the recognition of prokaryotes as essential components of the oceanic food web, bacterioplankton have been acknowledged as catalysts of most major biogeochemical processes in the sea. Studying heterotrophic bacterioplankton has been challenging, however, as most major clades have never been cultured or have only been grown to low densities in sea water. Here we describe the genome sequence of Silicibacter pomeroyi, a member of the marine Roseobacter clade (Fig. 1), the relatives of which comprise approximately 10-20% of coastal and oceanic mixed-layer bacterioplankton. This first genome sequence from any major heterotrophic clade consists of a chromosome (4,109,442 base pairs) and megaplasmid (491,611 base pairs). Genome analysis indicates that this organism relies upon a lithoheterotrophic strategy that uses inorganic compounds (carbon monoxide and sulphide) to supplement heterotrophy. Silicibacter pomeroyi also has genes advantageous for associations with plankton and suspended particles, including genes for uptake of algal-derived compounds, use of metabolites from reducing microzones, rapid growth and cell-density-dependent regulation. This bacterium has a physiology distinct from that of marine oligotrophs, adding a new strategy to the recognized repertoire for coping with a nutrient-poor ocean.

PubMedSearch : Moran_2004_Nature_432_910
PubMedID: 15602564
Gene_locus related to this paper: silpo-q5lke5 , silpo-q5lke7 , silpo-q5lke8 , silpo-q5lkk5 , silpo-q5lkv2 , silpo-q5lln9 , silpo-q5llu0 , silpo-q5llu2 , silpo-q5llx5 , silpo-q5lm66 , silpo-q5lmb9 , silpo-q5lml9 , silpo-q5lnp6 , silpo-q5lp28 , silpo-q5lp48 , silpo-q5lp56 , silpo-q5lpa5 , silpo-q5lpf7 , silpo-q5lpy6 , silpo-q5lrk1 , silpo-q5lsn7 , silpo-q5ltb5 , silpo-q5ltk0 , silpo-q5ltm5 , silpo-q5ltw8 , silpo-q5ltw9 , silpo-q5ltx1 , silpo-q5ltx5 , silpo-q5lu02 , silpo-q5lv12 , silpo-q5lv17 , silpo-q5lv53 , silpo-q5lvg9 , silpo-q5lw35 , silpo-q5lwk9 , silpo-q5lws0

Related information

Gene_locus silpo-q5lke5    silpo-q5lke7    silpo-q5lke8    silpo-q5lkk5    silpo-q5lkv2    silpo-q5lln9    silpo-q5llu0    silpo-q5llu2    silpo-q5llx5    silpo-q5lm66    silpo-q5lmb9    silpo-q5lml9    silpo-q5lnp6    silpo-q5lp28    silpo-q5lp48    silpo-q5lp56    silpo-q5lpa5    silpo-q5lpf7    silpo-q5lpy6    silpo-q5lrk1    silpo-q5lsn7    silpo-q5ltb5    silpo-q5ltk0    silpo-q5ltm5    silpo-q5ltw8    silpo-q5ltw9    silpo-q5ltx1    silpo-q5ltx5    silpo-q5lu02    silpo-q5lv12    silpo-q5lv17    silpo-q5lv53    silpo-q5lvg9    silpo-q5lw35    silpo-q5lwk9    silpo-q5lws0

Citations formats

Moran MA, Buchan A, Gonzalez JM, Heidelberg JF, Whitman WB, Kiene RP, Henriksen JR, King GM, Belas R, Fuqua C, Brinkac L, Lewis M, Johri S, Weaver B, Pai G, Eisen JA, Rahe E, Sheldon WM, Ye W, Miller TR, Carlton J, Rasko DA, Paulsen IT, Ren Q, Daugherty SC, DeBoy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Rosovitz MJ, Haft DH, Selengut J, Ward N (2004)
Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment
Nature 432 :910

Moran MA, Buchan A, Gonzalez JM, Heidelberg JF, Whitman WB, Kiene RP, Henriksen JR, King GM, Belas R, Fuqua C, Brinkac L, Lewis M, Johri S, Weaver B, Pai G, Eisen JA, Rahe E, Sheldon WM, Ye W, Miller TR, Carlton J, Rasko DA, Paulsen IT, Ren Q, Daugherty SC, DeBoy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Rosovitz MJ, Haft DH, Selengut J, Ward N (2004)
Nature 432 :910