Munoz-Torrero_2012_Neurodegener.Dis_10_96

Reference

Title : Expanding the multipotent profile of huprine-tacrine heterodimers as disease-modifying anti-Alzheimer agents - Munoz-Torrero_2012_Neurodegener.Dis_10_96
Author(s) : Munoz-Torrero D , Pera M , Relat J , Ratia M , Galdeano C , Viayna E , Sola I , Formosa X , Camps P , Badia A , Clos MV
Ref : Neurodegener Dis , 10 :96 , 2012
Abstract :

BACKGROUND: Multifactorial diseases such as Alzheimer's disease (AD) should be more efficiently tackled by drugs which hit multiple biological targets involved in their pathogenesis. We have recently developed a new family of huprine-tacrine heterodimers, rationally designed to hit multiple targets involved upstream and downstream in the neurotoxic cascade of AD, namely beta-amyloid aggregation and formation as well as acetylcholinesterase catalytic activity. OBJECTIVE: In this study, the aim was to expand the pharmacological profiling of huprine-tacrine heterodimers investigating their effect on muscarinic M(1) receptors as well as their neuroprotective effects against an oxidative insult. METHODS: Sprague-Dawley rat hippocampus homogenates were used to assess the specific binding of two selected compounds in competition with 1 nM [(3)H]pirenzepine (for M(1) receptors) or 0.8 nM [(3)H]quinuclidinyl benzilate (for M(2) receptors). For neuroprotection studies, SHSY5Y cell cultures were subjected to 250 muM hydrogen peroxide insult with or without preincubation with some huprine-tacrine heterodimers. RESULTS: A low nanomolar affinity and M(1)/M(2) selectivity has been found for the selected compounds. Huprine-tacrine heterodimers are not neurotoxic to SHSY5Y cells at a range of concentrations from 1 to 0.001 muM, and some of them can protect cells from the oxidative damage produced by hydrogen peroxide at concentrations as low as 0.001 muM. CONCLUSION: Even though it remains to be determined if these compounds act as agonists at M(1) receptors, as it is the case of the parent huprine Y, their low nanomolar M(1) affinity and neuroprotective effects expand their multitarget profile and increase their interest as disease-modifying anti-Alzheimer agents.

PubMedSearch : Munoz-Torrero_2012_Neurodegener.Dis_10_96
PubMedID: 22236498

Related information

Citations formats

Munoz-Torrero D, Pera M, Relat J, Ratia M, Galdeano C, Viayna E, Sola I, Formosa X, Camps P, Badia A, Clos MV (2012)
Expanding the multipotent profile of huprine-tacrine heterodimers as disease-modifying anti-Alzheimer agents
Neurodegener Dis 10 :96

Munoz-Torrero D, Pera M, Relat J, Ratia M, Galdeano C, Viayna E, Sola I, Formosa X, Camps P, Badia A, Clos MV (2012)
Neurodegener Dis 10 :96