Wei_2018_Proc.Natl.Acad.Sci.U.S.A_115_E4151

Reference

Title : Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality - Wei_2018_Proc.Natl.Acad.Sci.U.S.A_115_E4151
Author(s) : Wei C , Yang H , Wang S , Zhao J , Liu C , Gao L , Xia E , Lu Y , Tai Y , She G , Sun J , Cao H , Tong W , Gao Q , Li Y , Deng W , Jiang X , Wang W , Chen Q , Zhang S , Li H , Wu J , Wang P , Li P , Shi C , Zheng F , Jian J , Huang B , Shan D , Shi M , Fang C , Yue Y , Li F , Li D , Wei S , Han B , Jiang C , Yin Y , Xia T , Zhang Z , Bennetzen JL , Zhao S , Wan X
Ref : Proc Natl Acad Sci U S A , 115 :E4151 , 2018
Abstract : Tea, one of the world's most important beverage crops, provides numerous secondary metabolites that account for its rich taste and health benefits. Here we present a high-quality sequence of the genome of tea, Camellia sinensis var. sinensis (CSS), using both Illumina and PacBio sequencing technologies. At least 64% of the 3.1-Gb genome assembly consists of repetitive sequences, and the rest yields 33,932 high-confidence predictions of encoded proteins. Divergence between two major lineages, CSS and Camellia sinensis var. assamica (CSA), is calculated to approximately 0.38 to 1.54 million years ago (Mya). Analysis of genic collinearity reveals that the tea genome is the product of two rounds of whole-genome duplications (WGDs) that occurred approximately 30 to 40 and approximately 90 to 100 Mya. We provide evidence that these WGD events, and subsequent paralogous duplications, had major impacts on the copy numbers of secondary metabolite genes, particularly genes critical to producing three key quality compounds: catechins, theanine, and caffeine. Analyses of transcriptome and phytochemistry data show that amplification and transcriptional divergence of genes encoding a large acyltransferase family and leucoanthocyanidin reductases are associated with the characteristic young leaf accumulation of monomeric galloylated catechins in tea, while functional divergence of a single member of the glutamine synthetase gene family yielded theanine synthetase. This genome sequence will facilitate understanding of tea genome evolution and tea metabolite pathways, and will promote germplasm utilization for breeding improved tea varieties.
ESTHER : Wei_2018_Proc.Natl.Acad.Sci.U.S.A_115_E4151
PubMedSearch : Wei_2018_Proc.Natl.Acad.Sci.U.S.A_115_E4151
PubMedID: 29678829
Gene_locus related to this paper: camsi-a0a4s4dr18 , camsi-a0a4s4etg9 , camsi-a0a4s4e3j5 , camsi-a0a4s4d2s5 , camsi-a0a4s4duc4 , camsi-a0a4v3wr80 , camsi-a0a4v3wpu4

Citations formats

Wei C, Yang H, Wang S, Zhao J, Liu C, Gao L, Xia E, Lu Y, Tai Y, She G, Sun J, Cao H, Tong W, Gao Q, Li Y, Deng W, Jiang X, Wang W, Chen Q, Zhang S, Li H, Wu J, Wang P, Li P, Shi C, Zheng F, Jian J, Huang B, Shan D, Shi M, Fang C, Yue Y, Li F, Li D, Wei S, Han B, Jiang C, Yin Y, Xia T, Zhang Z, Bennetzen JL, Zhao S, Wan X (2018)
Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality
Proc Natl Acad Sci U S A 115 :E4151

Wei C, Yang H, Wang S, Zhao J, Liu C, Gao L, Xia E, Lu Y, Tai Y, She G, Sun J, Cao H, Tong W, Gao Q, Li Y, Deng W, Jiang X, Wang W, Chen Q, Zhang S, Li H, Wu J, Wang P, Li P, Shi C, Zheng F, Jian J, Huang B, Shan D, Shi M, Fang C, Yue Y, Li F, Li D, Wei S, Han B, Jiang C, Yin Y, Xia T, Zhang Z, Bennetzen JL, Zhao S, Wan X (2018)
Proc Natl Acad Sci U S A 115 :E4151