Weill_2003_Nature_423_136

Reference

Title : Comparative genomics: Insecticide resistance in mosquito vectors - Weill_2003_Nature_423_136
Author(s) : Weill M , Lutfalla G , Mogensen K , Chandre F , Berthomieu A , Berticat C , Pasteur N , Philips A , Fort P , Raymond M
Ref : Nature , 423 :136 , 2003
Abstract :

Resistance to insecticides among mosquitoes that act as vectors for malaria (Anopheles gambiae) and West Nile virus (Culex pipiens) emerged more than 25 years ago in Africa, America and Europe; this resistance is frequently due to a loss of sensitivity of the insect's acetylcholinesterase enzyme to organophosphates and carbamates1. Here we show that this insensitivity results from a single amino-acid substitution in the enzyme, which we found in ten highly resistant strains of C. pipiens from tropical (Africa and Caribbean) and temperate (Europe) areas, as well as in one resistant African strain of A. gambiae. Our identification of this mutation may pave the way for designing new insecticides.

PubMedSearch : Weill_2003_Nature_423_136
PubMedID: 12736674
Gene_locus related to this paper: anoga-ACHE1 , culpi-ACHE1

Related information

Mutation G119S_culpi-ACHE1    G119S_anoga-ACHE1
Gene_locus anoga-ACHE1    culpi-ACHE1

Citations formats

Weill M, Lutfalla G, Mogensen K, Chandre F, Berthomieu A, Berticat C, Pasteur N, Philips A, Fort P, Raymond M (2003)
Comparative genomics: Insecticide resistance in mosquito vectors
Nature 423 :136

Weill M, Lutfalla G, Mogensen K, Chandre F, Berthomieu A, Berticat C, Pasteur N, Philips A, Fort P, Raymond M (2003)
Nature 423 :136