Weiler_2022_Biochim.Biophys.Acta.Mol.Cell.Biol.Lipids_1867_159101

Reference

Title : A phospholipase B from Pseudomonas aeruginosa with activity towards endogenous phospholipids affects biofilm assembly - Weiler_2022_Biochim.Biophys.Acta.Mol.Cell.Biol.Lipids_1867_159101
Author(s) : Weiler AJ , Spitz O , Gudzuhn M , Schott-Verdugo SN , Kamel M , Thiele B , Streit WR , Kedrov A , Schmitt L , Gohlk H , Kovacic F , Gohlke H
Ref : Biochimica & Biophysica Acta Molecular & Cellular Biology Lipids , 1867 :159101 , 2022
Abstract :

Pseudomonas aeruginosa is a severe threat to immunocompromised patients due to its numerous virulence factors and biofilm-mediated multidrug resistance. It produces and secretes various toxins with hydrolytic activities including phospholipases. However, the function of intracellular phospholipases for bacterial virulence has still not been established. Here, we demonstrate that the hypothetical gene pa2927 of P. aeruginosa encodes a novel phospholipase B named PaPlaB. At reaction equilibrium, PaPlaB purified from detergent-solubilized membranes of E. coli released fatty acids (FAs) from sn-1 and sn-2 positions of phospholipids at the molar ratio of 51:49. PaPlaB in vitro hydrolyzed P. aeruginosa phospholipids reconstituted in detergent micelles and phospholipids reconstituted in vesicles. Cellular localization studies indicate that PaPlaB is a cell-bound PLA of P. aeruginosa and that it is peripherally bound to both membranes in E. coli, yet the active form was predominantly associated with the cytoplasmic membrane of E. coli. Decreasing the concentration of purified and detergent-stabilized PaPlaB leads to increased enzymatic activity, and at the same time triggers oligomer dissociation. We showed that the free FA profile, biofilm amount and architecture of the wild type and deltaplaB differ. However, it remains to be established how the PLB activity of PaPlaB is regulated by homooligomerisation and how it relates to the phenotype of the P. aeruginosa deltaplaB. This novel putative virulence factor contributes to our understanding of phospholipid degrading enzymes and might provide a target for new therapeutics against P. aeruginosa biofilms.

PubMedSearch : Weiler_2022_Biochim.Biophys.Acta.Mol.Cell.Biol.Lipids_1867_159101
PubMedID: 35063652
Gene_locus related to this paper: pseae-PA2927

Related information

Substrate Heptadecanoylphosphatidylcholine
Gene_locus pseae-PA2927
Family PlaB

Citations formats

Weiler AJ, Spitz O, Gudzuhn M, Schott-Verdugo SN, Kamel M, Thiele B, Streit WR, Kedrov A, Schmitt L, Gohlk H, Kovacic F, Gohlke H (2022)
A phospholipase B from Pseudomonas aeruginosa with activity towards endogenous phospholipids affects biofilm assembly
Biochimica & Biophysica Acta Molecular & Cellular Biology Lipids 1867 :159101

Weiler AJ, Spitz O, Gudzuhn M, Schott-Verdugo SN, Kamel M, Thiele B, Streit WR, Kedrov A, Schmitt L, Gohlk H, Kovacic F, Gohlke H (2022)
Biochimica & Biophysica Acta Molecular & Cellular Biology Lipids 1867 :159101