Bolchi A

References (2)

Title : A family of archaea-like carboxylesterases preferentially expressed in the symbiotic phase of the mychorrizal fungus Tuber melanosporum - Cavazzini_2017_Sci.Rep_7_7628
Author(s) : Cavazzini D , Grossi G , Levati E , Vallese F , Montanini B , Bolchi A , Zanotti G , Ottonello S
Ref : Sci Rep , 7 :7628 , 2017
Abstract : An increasing number of esterases is being revealed by (meta) genomic sequencing projects, but few of them are functionally/structurally characterized, especially enzymes of fungal origin. Starting from a three-member gene family of secreted putative "lipases/esterases" preferentially expressed in the symbiotic phase of the mycorrhizal fungus Tuber melanosporum ("black truffle"), we show here that these enzymes (TmelEST1-3) are dimeric, heat-resistant carboxylesterases capable of hydrolyzing various short/medium chain p-nitrophenyl esters. TmelEST2 was the most active (kcat = 2302 s-1 for p-nitrophenyl-butyrate) and thermally stable (T50 = 68.3 degrees C), while TmelEST3 was the only one displaying some activity on tertiary alcohol esters. X-ray diffraction analysis of TmelEST2 revealed a classical alpha/beta hydrolase-fold structure, with a network of dimer-stabilizing intermolecular interactions typical of archaea esterases. The predicted structures of TmelEST1 and 3 are overall quite similar to that of TmelEST2 but with some important differences. Most notably, the much smaller volume of the substrate-binding pocket and the more acidic electrostatic surface profile of TmelEST1. This was also the only TmelEST capable of hydrolyzing feruloyl-esters, suggestinng a possible role in root cell-wall deconstruction during symbiosis establishment. In addition to their potential biotechnological interest, TmelESTs raise important questions regarding the evolutionary recruitment of archaea-like enzymes into mesophilic subterranean fungi such as truffles.
ESTHER : Cavazzini_2017_Sci.Rep_7_7628
PubMedSearch : Cavazzini_2017_Sci.Rep_7_7628
PubMedID: 28794466
Gene_locus related to this paper: tubmm-TmEst2 , tubmm-TmEst1 , tubmm-TmEst3

Title : Perigord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis - Martin_2010_Nature_464_1033
Author(s) : Martin F , Kohler A , Murat C , Balestrini R , Coutinho PM , Jaillon O , Montanini B , Morin E , Noel B , Percudani R , Porcel B , Rubini A , Amicucci A , Amselem J , Anthouard V , Arcioni S , Artiguenave F , Aury JM , Ballario P , Bolchi A , Brenna A , Brun A , Buee M , Cantarel B , Chevalier G , Couloux A , Da Silva C , Denoeud F , Duplessis S , Ghignone S , Hilselberger B , Iotti M , Marcais B , Mello A , Miranda M , Pacioni G , Quesneville H , Riccioni C , Ruotolo R , Splivallo R , Stocchi V , Tisserant E , Viscomi AR , Zambonelli A , Zampieri E , Henrissat B , Lebrun MH , Paolocci F , Bonfante P , Ottonello S , Wincker P
Ref : Nature , 464 :1033 , 2010
Abstract : The Perigord black truffle (Tuber melanosporum Vittad.) and the Piedmont white truffle dominate today's truffle market. The hypogeous fruiting body of T. melanosporum is a gastronomic delicacy produced by an ectomycorrhizal symbiont endemic to calcareous soils in southern Europe. The worldwide demand for this truffle has fuelled intense efforts at cultivation. Identification of processes that condition and trigger fruit body and symbiosis formation, ultimately leading to efficient crop production, will be facilitated by a thorough analysis of truffle genomic traits. In the ectomycorrhizal Laccaria bicolor, the expansion of gene families may have acted as a 'symbiosis toolbox'. This feature may however reflect evolution of this particular taxon and not a general trait shared by all ectomycorrhizal species. To get a better understanding of the biology and evolution of the ectomycorrhizal symbiosis, we report here the sequence of the haploid genome of T. melanosporum, which at approximately 125 megabases is the largest and most complex fungal genome sequenced so far. This expansion results from a proliferation of transposable elements accounting for approximately 58% of the genome. In contrast, this genome only contains approximately 7,500 protein-coding genes with very rare multigene families. It lacks large sets of carbohydrate cleaving enzymes, but a few of them involved in degradation of plant cell walls are induced in symbiotic tissues. The latter feature and the upregulation of genes encoding for lipases and multicopper oxidases suggest that T. melanosporum degrades its host cell walls during colonization. Symbiosis induces an increased expression of carbohydrate and amino acid transporters in both L. bicolor and T. melanosporum, but the comparison of genomic traits in the two ectomycorrhizal fungi showed that genetic predispositions for symbiosis-'the symbiosis toolbox'-evolved along different ways in ascomycetes and basidiomycetes.
ESTHER : Martin_2010_Nature_464_1033
PubMedSearch : Martin_2010_Nature_464_1033
PubMedID: 20348908
Gene_locus related to this paper: 9pezi-d5g8f4 , 9pezi-d5gi84 , 9pezi-d5gph4 , tubmm-d5g4w2 , tubmm-d5g4w3 , tubmm-d5g4w6 , tubmm-d5g5r5 , tubmm-d5g8z4 , tubmm-d5g938 , tubmm-d5ga65 , tubmm-d5gcz1 , tubmm-d5giz0 , tubmm-d5gkr8 , tubmm-d5glm4 , tubmm-d5gnw0 , tubmm-dapb , tubmm-d5gfj1 , tubmm-d5gpf4 , tubmm-TmEst2 , tubmm-TmEst1 , tubmm-TmEst3 , 9pezi-a0a292py12 , tubmm-kex1