Artiguenave F

References (11)

Title : Parallel evolution of non-homologous isofunctional enzymes in methionine biosynthesis - Bastard_2017_Nat.Chem.Biol_13_858
Author(s) : Bastard K , Perret A , Mariage A , Bessonnet T , Pinet-Turpault A , Petit JL , Darii E , Bazire P , Vergne-Vaxelaire C , Brewee C , Debard A , Pellouin V , Besnard-Gonnet M , Artiguenave F , Medigue C , Vallenet D , Danchin A , Zaparucha A , Weissenbach J , Salanoubat M , de Berardinis V
Ref : Nat Chemical Biology , 13 :858 , 2017
Abstract : Experimental validation of enzyme function is crucial for genome interpretation, but it remains challenging because it cannot be scaled up to accommodate the constant accumulation of genome sequences. We tackled this issue for the MetA and MetX enzyme families, phylogenetically unrelated families of acyl-L-homoserine transferases involved in L-methionine biosynthesis. Members of these families are prone to incorrect annotation because MetX and MetA enzymes are assumed to always use acetyl-CoA and succinyl-CoA, respectively. We determined the enzymatic activities of 100 enzymes from diverse species, and interpreted the results by structural classification of active sites based on protein structure modeling. We predict that >60% of the 10,000 sequences from these families currently present in databases are incorrectly annotated, and suggest that acetyl-CoA was originally the sole substrate of these isofunctional enzymes, which evolved to use exclusively succinyl-CoA in the most recent bacteria. We also uncovered a divergent subgroup of MetX enzymes in fungi that participate only in L-cysteine biosynthesis as O-succinyl-L-serine transferases.
ESTHER : Bastard_2017_Nat.Chem.Biol_13_858
PubMedSearch : Bastard_2017_Nat.Chem.Biol_13_858
PubMedID: 28581482
Gene_locus related to this paper: neima-metx , strmk-metx , defds-metxa , desmr-metxa , halvd-metxa , metfp-metxa , sulao-metxa , hallt-metxa , metez-metxa , halaf-metxs , metms-metxa , fraad-sst , halaf-sst , naupa-metxa , metzd-metxa , cycms-metxa , comtk-metxs , metpe-metxa , metrm-metxa , halnc-metxs , breda-metxs

Title : Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida - Collen_2013_Proc.Natl.Acad.Sci.U.S.A_110_5247
Author(s) : Collen J , Porcel B , Carre W , Ball SG , Chaparro C , Tonon T , Barbeyron T , Michel G , Noel B , Valentin K , Elias M , Artiguenave F , Arun A , Aury JM , Barbosa-Neto JF , Bothwell JH , Bouget FY , Brillet L , Cabello-Hurtado F , Capella-Gutierrez S , Charrier B , Cladiere L , Cock JM , Coelho SM , Colleoni C , Czjzek M , Da Silva C , Delage L , Denoeud F , Deschamps P , Dittami SM , Gabaldon T , Gachon CM , Groisillier A , Herve C , Jabbari K , Katinka M , Kloareg B , Kowalczyk N , Labadie K , LeBlanc C , Lopez PJ , McLachlan DH , Meslet-Cladiere L , Moustafa A , Nehr Z , Nyvall Collen P , Panaud O , Partensky F , Poulain J , Rensing SA , Rousvoal S , Samson G , Symeonidi A , Weissenbach J , Zambounis A , Wincker P , Boyen C
Ref : Proc Natl Acad Sci U S A , 110 :5247 , 2013
Abstract : Red seaweeds are key components of coastal ecosystems and are economically important as food and as a source of gelling agents, but their genes and genomes have received little attention. Here we report the sequencing of the 105-Mbp genome of the florideophyte Chondrus crispus (Irish moss) and the annotation of the 9,606 genes. The genome features an unusual structure characterized by gene-dense regions surrounded by repeat-rich regions dominated by transposable elements. Despite its fairly large size, this genome shows features typical of compact genomes, e.g., on average only 0.3 introns per gene, short introns, low median distance between genes, small gene families, and no indication of large-scale genome duplication. The genome also gives insights into the metabolism of marine red algae and adaptations to the marine environment, including genes related to halogen metabolism, oxylipins, and multicellularity (microRNA processing and transcription factors). Particularly interesting are features related to carbohydrate metabolism, which include a minimalistic gene set for starch biosynthesis, the presence of cellulose synthases acquired before the primary endosymbiosis showing the polyphyly of cellulose synthesis in Archaeplastida, and cellulases absent in terrestrial plants as well as the occurrence of a mannosylglycerate synthase potentially originating from a marine bacterium. To explain the observations on genome structure and gene content, we propose an evolutionary scenario involving an ancestral red alga that was driven by early ecological forces to lose genes, introns, and intergenetic DNA; this loss was followed by an expansion of genome size as a consequence of activity of transposable elements.
ESTHER : Collen_2013_Proc.Natl.Acad.Sci.U.S.A_110_5247
PubMedSearch : Collen_2013_Proc.Natl.Acad.Sci.U.S.A_110_5247
PubMedID: 23503846
Gene_locus related to this paper: chocr-r7qut2 , chocr-r7qfm4 , chocr-r7qf11

Title : Genome sequence of the stramenopile Blastocystis, a human anaerobic parasite - Denoeud_2011_Genome.Biol_12_R29
Author(s) : Denoeud F , Roussel M , Noel B , Wawrzyniak I , Da Silva C , Diogon M , Viscogliosi E , Brochier-Armanet C , Couloux A , Poulain J , Segurens B , Anthouard V , Texier C , Blot N , Poirier P , Ng GC , Tan KS , Artiguenave F , Jaillon O , Aury JM , Delbac F , Wincker P , Vivares CP , El Alaoui H
Ref : Genome Biol , 12 :R29 , 2011
Abstract : BACKGROUND: Blastocystis is a highly prevalent anaerobic eukaryotic parasite of humans and animals that is associated with various gastrointestinal and extraintestinal disorders. Epidemiological studies have identified different subtypes but no one subtype has been definitively correlated with disease.
RESULTS: Here we report the 18.8 Mb genome sequence of a Blastocystis subtype 7 isolate, which is the smallest stramenopile genome sequenced to date. The genome is highly compact and contains intriguing rearrangements. Comparisons with other available stramenopile genomes (plant pathogenic oomycete and diatom genomes) revealed effector proteins potentially involved in the adaptation to the intestinal environment, which were likely acquired via horizontal gene transfer. Moreover, Blastocystis living in anaerobic conditions harbors mitochondria-like organelles. An incomplete oxidative phosphorylation chain, a partial Krebs cycle, amino acid and fatty acid metabolisms and an iron-sulfur cluster assembly are all predicted to occur in these organelles. Predicted secretory proteins possess putative activities that may alter host physiology, such as proteases, protease-inhibitors, immunophilins and glycosyltransferases. This parasite also possesses the enzymatic machinery to tolerate oxidative bursts resulting from its own metabolism or induced by the host immune system.
CONCLUSIONS: This study provides insights into the genome architecture of this unusual stramenopile. It also proposes candidate genes with which to study the physiopathology of this parasite and thus may lead to further investigations into Blastocystis-host interactions.
ESTHER : Denoeud_2011_Genome.Biol_12_R29
PubMedSearch : Denoeud_2011_Genome.Biol_12_R29
PubMedID: 21439036
Gene_locus related to this paper: blaho-d8m103 , blaho-d8lw93

Title : Perigord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis - Martin_2010_Nature_464_1033
Author(s) : Martin F , Kohler A , Murat C , Balestrini R , Coutinho PM , Jaillon O , Montanini B , Morin E , Noel B , Percudani R , Porcel B , Rubini A , Amicucci A , Amselem J , Anthouard V , Arcioni S , Artiguenave F , Aury JM , Ballario P , Bolchi A , Brenna A , Brun A , Buee M , Cantarel B , Chevalier G , Couloux A , Da Silva C , Denoeud F , Duplessis S , Ghignone S , Hilselberger B , Iotti M , Marcais B , Mello A , Miranda M , Pacioni G , Quesneville H , Riccioni C , Ruotolo R , Splivallo R , Stocchi V , Tisserant E , Viscomi AR , Zambonelli A , Zampieri E , Henrissat B , Lebrun MH , Paolocci F , Bonfante P , Ottonello S , Wincker P
Ref : Nature , 464 :1033 , 2010
Abstract : The Perigord black truffle (Tuber melanosporum Vittad.) and the Piedmont white truffle dominate today's truffle market. The hypogeous fruiting body of T. melanosporum is a gastronomic delicacy produced by an ectomycorrhizal symbiont endemic to calcareous soils in southern Europe. The worldwide demand for this truffle has fuelled intense efforts at cultivation. Identification of processes that condition and trigger fruit body and symbiosis formation, ultimately leading to efficient crop production, will be facilitated by a thorough analysis of truffle genomic traits. In the ectomycorrhizal Laccaria bicolor, the expansion of gene families may have acted as a 'symbiosis toolbox'. This feature may however reflect evolution of this particular taxon and not a general trait shared by all ectomycorrhizal species. To get a better understanding of the biology and evolution of the ectomycorrhizal symbiosis, we report here the sequence of the haploid genome of T. melanosporum, which at approximately 125 megabases is the largest and most complex fungal genome sequenced so far. This expansion results from a proliferation of transposable elements accounting for approximately 58% of the genome. In contrast, this genome only contains approximately 7,500 protein-coding genes with very rare multigene families. It lacks large sets of carbohydrate cleaving enzymes, but a few of them involved in degradation of plant cell walls are induced in symbiotic tissues. The latter feature and the upregulation of genes encoding for lipases and multicopper oxidases suggest that T. melanosporum degrades its host cell walls during colonization. Symbiosis induces an increased expression of carbohydrate and amino acid transporters in both L. bicolor and T. melanosporum, but the comparison of genomic traits in the two ectomycorrhizal fungi showed that genetic predispositions for symbiosis-'the symbiosis toolbox'-evolved along different ways in ascomycetes and basidiomycetes.
ESTHER : Martin_2010_Nature_464_1033
PubMedSearch : Martin_2010_Nature_464_1033
PubMedID: 20348908
Gene_locus related to this paper: 9pezi-d5g8f4 , 9pezi-d5gi84 , 9pezi-d5gph4 , tubmm-d5g4w2 , tubmm-d5g4w3 , tubmm-d5g4w6 , tubmm-d5g5r5 , tubmm-d5g8z4 , tubmm-d5g938 , tubmm-d5ga65 , tubmm-d5gcz1 , tubmm-d5giz0 , tubmm-d5gkr8 , tubmm-d5glm4 , tubmm-d5gnw0 , tubmm-dapb , tubmm-d5gfj1 , tubmm-d5gpf4 , tubmm-TmEst2 , tubmm-TmEst1 , tubmm-TmEst3 , 9pezi-a0a292py12 , tubmm-kex1

Title : The Ectocarpus genome and the independent evolution of multicellularity in brown algae - Cock_2010_Nature_465_617
Author(s) : Cock JM , Sterck L , Rouze P , Scornet D , Allen AE , Amoutzias G , Anthouard V , Artiguenave F , Aury JM , Badger JH , Beszteri B , Billiau K , Bonnet E , Bothwell JH , Bowler C , Boyen C , Brownlee C , Carrano CJ , Charrier B , Cho GY , Coelho SM , Collen J , Corre E , Da Silva C , Delage L , Delaroque N , Dittami SM , Doulbeau S , Elias M , Farnham G , Gachon CM , Gschloessl B , Heesch S , Jabbari K , Jubin C , Kawai H , Kimura K , Kloareg B , Kupper FC , Lang D , Le Bail A , LeBlanc C , Lerouge P , Lohr M , Lopez PJ , Martens C , Maumus F , Michel G , Miranda-Saavedra D , Morales J , Moreau H , Motomura T , Nagasato C , Napoli CA , Nelson DR , Nyvall-Collen P , Peters AF , Pommier C , Potin P , Poulain J , Quesneville H , Read B , Rensing SA , Ritter A , Rousvoal S , Samanta M , Samson G , Schroeder DC , Segurens B , Strittmatter M , Tonon T , Tregear JW , Valentin K , von Dassow P , Yamagishi T , Van de Peer Y , Wincker P
Ref : Nature , 465 :617 , 2010
Abstract : Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic approaches to explore these and other aspects of brown algal biology further.
ESTHER : Cock_2010_Nature_465_617
PubMedSearch : Cock_2010_Nature_465_617
PubMedID: 20520714
Gene_locus related to this paper: ectsi-d7fm61 , ectsi-d7fs16 , ectsi-d7fsv3 , ectsi-d7fte8 , ectsi-d7fux6 , ectsi-d7fvr0 , ectsi-d7fvu4 , ectsi-d7fwk0 , ectsi-d7fyh7 , ectsi-d7g0w7 , ectsi-d7g6g5 , ectsi-d7g484 , ectsi-d7g686 , ectsi-d8lca9 , ectsi-d8lfv2 , ectsi-d8lqg6 , ectsi-d8ltj9 , ectsi-d7fjz2 , ectsi-d7g376

Title : Plasticity of animal genome architecture unmasked by rapid evolution of a pelagic tunicate - Denoeud_2010_Science_330_1381
Author(s) : Denoeud F , Henriet S , Mungpakdee S , Aury JM , Da Silva C , Brinkmann H , Mikhaleva J , Olsen LC , Jubin C , Canestro C , Bouquet JM , Danks G , Poulain J , Campsteijn C , Adamski M , Cross I , Yadetie F , Muffato M , Louis A , Butcher S , Tsagkogeorga G , Konrad A , Singh S , Jensen MF , Huynh Cong E , Eikeseth-Otteraa H , Noel B , Anthouard V , Porcel BM , Kachouri-Lafond R , Nishino A , Ugolini M , Chourrout P , Nishida H , Aasland R , Huzurbazar S , Westhof E , Delsuc F , Lehrach H , Reinhardt R , Weissenbach J , Roy SW , Artiguenave F , Postlethwait JH , Manak JR , Thompson EM , Jaillon O , Du Pasquier L , Boudinot P , Liberles DA , Volff JN , Philippe H , Lenhard B , Roest Crollius H , Wincker P , Chourrout D
Ref : Science , 330 :1381 , 2010
Abstract : Genomes of animals as different as sponges and humans show conservation of global architecture. Here we show that multiple genomic features including transposon diversity, developmental gene repertoire, physical gene order, and intron-exon organization are shattered in the tunicate Oikopleura, belonging to the sister group of vertebrates and retaining chordate morphology. Ancestral architecture of animal genomes can be deeply modified and may therefore be largely nonadaptive. This rapidly evolving animal lineage thus offers unique perspectives on the level of genome plasticity. It also illuminates issues as fundamental as the mechanisms of intron gain.
ESTHER : Denoeud_2010_Science_330_1381
PubMedSearch : Denoeud_2010_Science_330_1381
PubMedID: 21097902
Gene_locus related to this paper: oikdi-ACHE , oikdi-cholike.1 , oikdi-cholike.2 , oikdi-e4wug8 , oikdi-e4ww04 , oikdi-e4wxm9 , oikdi-e4x0y9 , oikdi-e4x1t6 , oikdi-e4x2c7.1 , oikdi-e4x2c7.2 , oikdi-e4x4v7 , oikdi-e4x5i7 , oikdi-e4x5s6 , oikdi-e4x6c7 , oikdi-e4x6i0 , oikdi-e4x7y6 , oikdi-e4xa91 , oikdi-e4xe86 , oikdi-e4xeg3 , oikdi-e4xgg8 , oikdi-e4xiw0 , oikdi-e4xk51 , oikdi-e4xl53 , oikdi-e4xm24 , oikdi-e4xm43 , oikdi-e4xn79 , oikdi-e4xp62 , oikdi-e4xpy1 , oikdi-e4xqm4 , oikdi-e4xtm1 , oikdi-e4xug7 , oikdi-e4xv59 , oikdi-e4xw55 , oikdi-e4xwt6 , oikdi-e4xxh8 , oikdi-e4y5n1 , oikdi-e4y7j8 , oikdi-e4y8s7 , oikdi-e4ya76 , oikdi-e4ydw0 , oikdi-e4yi65 , oikdi-e4yp15 , oikdi-e4yp69 , oikdi-e4yst1 , oikdi-e4yvr0 , oikdi-e4yvu0 , oikdi-e4x630 , oikdi-e4ykb2 , oikdi-e4wt97 , oikdi-e4ws23

Title : Comparative genomics of protoploid Saccharomycetaceae - Souciet_2009_Genome.Res_19_1696
Author(s) : Souciet JL , Dujon B , Gaillardin C , Johnston M , Baret PV , Cliften P , Sherman DJ , Weissenbach J , Westhof E , Wincker P , Jubin C , Poulain J , Barbe V , Segurens B , Artiguenave F , Anthouard V , Vacherie B , Val ME , Fulton RS , Minx P , Wilson R , Durrens P , Jean G , Marck C , Martin T , Nikolski M , Rolland T , Seret ML , Casaregola S , Despons L , Fairhead C , Fischer G , Lafontaine I , Leh V , Lemaire M , De Montigny J , Neuveglise C , Thierry A , Blanc-Lenfle I , Bleykasten C , Diffels J , Fritsch E , Frangeul L , Goeffon A , Jauniaux N , Kachouri-Lafond R , Payen C , Potier S , Pribylova L , Ozanne C , Richard GF , Sacerdot C , Straub ML , Talla E
Ref : Genome Res , 19 :1696 , 2009
Abstract : Our knowledge of yeast genomes remains largely dominated by the extensive studies on Saccharomyces cerevisiae and the consequences of its ancestral duplication, leaving the evolution of the entire class of hemiascomycetes only partly explored. We concentrate here on five species of Saccharomycetaceae, a large subdivision of hemiascomycetes, that we call "protoploid" because they diverged from the S. cerevisiae lineage prior to its genome duplication. We determined the complete genome sequences of three of these species: Kluyveromyces (Lachancea) thermotolerans and Saccharomyces (Lachancea) kluyveri (two members of the newly described Lachancea clade), and Zygosaccharomyces rouxii. We included in our comparisons the previously available sequences of Kluyveromyces lactis and Ashbya (Eremothecium) gossypii. Despite their broad evolutionary range and significant individual variations in each lineage, the five protoploid Saccharomycetaceae share a core repertoire of approximately 3300 protein families and a high degree of conserved synteny. Synteny blocks were used to define gene orthology and to infer ancestors. Far from representing minimal genomes without redundancy, the five protoploid yeasts contain numerous copies of paralogous genes, either dispersed or in tandem arrays, that, altogether, constitute a third of each genome. Ancient, conserved paralogs as well as novel, lineage-specific paralogs were identified.
ESTHER : Souciet_2009_Genome.Res_19_1696
PubMedSearch : Souciet_2009_Genome.Res_19_1696
PubMedID: 19525356
Gene_locus related to this paper: lactc-c5dci9 , lactc-c5ddi5 , lactc-c5dew5 , lactc-c5dez1 , lactc-c5df11 , lactc-c5dfh7 , lactc-c5dgd1 , lactc-c5dif7 , lactc-c5din7 , lactc-c5dja0 , lactc-c5dm95 , lactc-c5dn06 , lactc-c5dnn9 , lactc-c5e2g8 , lactc-c5e3n5 , lactc-c5e375 , zygrc-c5drr0 , zygrc-c5dvh0 , zygrc-c5dvl2 , zygrc-c5dvx0 , zygrc-c5dvz8 , zygrc-c5dx83 , zygrc-c5dxn5 , zygrc-c5dxq9 , zygrc-c5e0w1 , zygrc-c5e1e4 , zygrc-c5e1h2 , zygro-a0a1q2zt01 , 9sach-a0a0p1kuu1 , lactc-kex1 , zygrc-kex1

Title : The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla - Jaillon_2007_Nature_449_463
Author(s) : Jaillon O , Aury JM , Noel B , Policriti A , Clepet C , Casagrande A , Choisne N , Aubourg S , Vitulo N , Jubin C , Vezzi A , Legeai F , Hugueney P , Dasilva C , Horner D , Mica E , Jublot D , Poulain J , Bruyere C , Billault A , Segurens B , Gouyvenoux M , Ugarte E , Cattonaro F , Anthouard V , Vico V , Del Fabbro C , Alaux M , Di Gaspero G , Dumas V , Felice N , Paillard S , Juman I , Moroldo M , Scalabrin S , Canaguier A , Le Clainche I , Malacrida G , Durand E , Pesole G , Laucou V , Chatelet P , Merdinoglu D , Delledonne M , Pezzotti M , Lecharny A , Scarpelli C , Artiguenave F , Pe ME , Valle G , Morgante M , Caboche M , Adam-Blondon AF , Weissenbach J , Quetier F , Wincker P
Ref : Nature , 449 :463 , 2007
Abstract : The analysis of the first plant genomes provided unexpected evidence for genome duplication events in species that had previously been considered as true diploids on the basis of their genetics. These polyploidization events may have had important consequences in plant evolution, in particular for species radiation and adaptation and for the modulation of functional capacities. Here we report a high-quality draft of the genome sequence of grapevine (Vitis vinifera) obtained from a highly homozygous genotype. The draft sequence of the grapevine genome is the fourth one produced so far for flowering plants, the second for a woody species and the first for a fruit crop (cultivated for both fruit and beverage). Grapevine was selected because of its important place in the cultural heritage of humanity beginning during the Neolithic period. Several large expansions of gene families with roles in aromatic features are observed. The grapevine genome has not undergone recent genome duplication, thus enabling the discovery of ancestral traits and features of the genetic organization of flowering plants. This analysis reveals the contribution of three ancestral genomes to the grapevine haploid content. This ancestral arrangement is common to many dicotyledonous plants but is absent from the genome of rice, which is a monocotyledon. Furthermore, we explain the chronology of previously described whole-genome duplication events in the evolution of flowering plants.
ESTHER : Jaillon_2007_Nature_449_463
PubMedSearch : Jaillon_2007_Nature_449_463
PubMedID: 17721507
Gene_locus related to this paper: vitvi-a5b6n6 , vitvi-a5b7c0 , vitvi-a5b8l9 , vitvi-a5bji4 , vitvi-a5bxd7 , vitvi-a5c1g2 , vitvi-a5c8p7 , vitvi-a7ntu2 , vitvi-a7pnb4 , vitvi-a7pus9 , vitvi-a7q3d1 , vitvi-a7qpz3 , vitvi-BIG8.1 , vitvi-d7sqb8 , vitvi-d7ssp2 , vitvi-d7sx57 , vitvi-d7t734 , vitvi-d7t940 , vitvi-d7tef1 , vitvi-d7tg96 , vitvi-d7tle9 , vitvi-d7tmb8 , vitvi-d7tpk8 , vitvi-d7tve2 , vitvi-d7tvr0 , vitvi-d7ubd6 , vitvi-f6hhx5 , vitvi-f6hi76 , vitvi-f6hqe0 , vitvi-f6hzf1.1 , vitvi-f6hzf1.2 , vitvi-d7ssd7 , vitvi-d7ssd8 , vitvi-d7ssd9 , vitvi-d7u935 , vitvi-f6gyw1 , vitvi-f6gyw2 , vitvi-f6gyw4 , vitvi-f6hqf1 , vitvi-f6hqf4 , vitvi-d7tum4 , vitvi-d7tba3 , vitvi-d7stm8 , vitvi-d7t3j3 , vitvi-d7uce5 , vitvi-f6he55 , vitvi-d7thp4 , vitvi-d7tfe6 , vitvi-e0cv10 , vitvi-f6gtp7 , vitvi-f6hva3 , vitvi-d7tqu0 , vitvi-f6hqq0 , vitvi-d7tci5 , vitvi-d7sut7 , vitvi-d7sut6 , vitvi-f6h317 , vitvi-f6h318 , vitvi-f6hsf1 , vitvi-f6hqd1 , vitvi-f6hqd0 , vitvi-f6hfp6 , vitvi-d7u2i4 , vitvi-f6gsx7 , vitvi-d7si01 , vitvi-d7si06 , vitvi-f6hz08 , vitvi-d7tr61 , vitvi-e0crl0 , vitvi-f6hrz4 , vitvi-f6i7l0

Title : Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome - Dufresne_2003_Proc.Natl.Acad.Sci.U.S.A_100_10020
Author(s) : Dufresne A , Salanoubat M , Partensky F , Artiguenave F , Axmann IM , Barbe V , Duprat S , Galperin MY , Koonin EV , Le Gall F , Makarova KS , Ostrowski M , Oztas S , Robert C , Rogozin IB , Scanlan DJ , Tandeau de Marsac N , Weissenbach J , Wincker P , Wolf YI , Hess WR
Ref : Proc Natl Acad Sci U S A , 100 :10020 , 2003
Abstract : Prochlorococcus marinus, the dominant photosynthetic organism in the ocean, is found in two main ecological forms: high-light-adapted genotypes in the upper part of the water column and low-light-adapted genotypes at the bottom of the illuminated layer. P. marinus SS120, the complete genome sequence reported here, is an extremely low-light-adapted form. The genome of P. marinus SS120 is composed of a single circular chromosome of 1,751,080 bp with an average G+C content of 36.4%. It contains 1,884 predicted protein-coding genes with an average size of 825 bp, a single rRNA operon, and 40 tRNA genes. Together with the 1.66-Mbp genome of P. marinus MED4, the genome of P. marinus SS120 is one of the two smallest genomes of a photosynthetic organism known to date. It lacks many genes that are involved in photosynthesis, DNA repair, solute uptake, intermediary metabolism, motility, phototaxis, and other functions that are conserved among other cyanobacteria. Systems of signal transduction and environmental stress response show a particularly drastic reduction in the number of components, even taking into account the small size of the SS120 genome. In contrast, housekeeping genes, which encode enzymes of amino acid, nucleotide, cofactor, and cell wall biosynthesis, are all present. Because of its remarkable compactness, the genome of P. marinus SS120 might approximate the minimal gene complement of a photosynthetic organism.
ESTHER : Dufresne_2003_Proc.Natl.Acad.Sci.U.S.A_100_10020
PubMedSearch : Dufresne_2003_Proc.Natl.Acad.Sci.U.S.A_100_10020
PubMedID: 12917486
Gene_locus related to this paper: proma-MHPC2 , proma-PRO1109 , proma-q7v9n9 , proma-q7vb48 , proma-q7vb60 , proma-q7vbe1 , proma-q7vbl5 , proma-q7vcg4 , proma-q7vdr9 , proma-q7ved1

Title : Genome sequence of the plant pathogen Ralstonia solanacearum - Salanoubat_2002_Nature_415_497
Author(s) : Salanoubat M , Genin S , Artiguenave F , Gouzy J , Mangenot S , Arlat M , Billault A , Brottier P , Camus JC , Cattolico L , Chandler M , Choisne N , Claudel-Renard C , Cunnac S , Demange N , Gaspin C , Lavie M , Moisan A , Robert C , Saurin W , Schiex T , Siguier P , Thebault P , Whalen M , Wincker P , Levy M , Weissenbach J , Boucher CA
Ref : Nature , 415 :497 , 2002
Abstract : Ralstonia solanacearum is a devastating, soil-borne plant pathogen with a global distribution and an unusually wide host range. It is a model system for the dissection of molecular determinants governing pathogenicity. We present here the complete genome sequence and its analysis of strain GMI1000. The 5.8-megabase (Mb) genome is organized into two replicons: a 3.7-Mb chromosome and a 2.1-Mb megaplasmid. Both replicons have a mosaic structure providing evidence for the acquisition of genes through horizontal gene transfer. Regions containing genetically mobile elements associated with the percentage of G+C bias may have an important function in genome evolution. The genome encodes many proteins potentially associated with a role in pathogenicity. In particular, many putative attachment factors were identified. The complete repertoire of type III secreted effector proteins can be studied. Over 40 candidates were identified. Comparison with other genomes suggests that bacterial plant pathogens and animal pathogens harbour distinct arrays of specialized type III-dependent effectors.
ESTHER : Salanoubat_2002_Nature_415_497
PubMedSearch : Salanoubat_2002_Nature_415_497
PubMedID: 11823852
Gene_locus related to this paper: ralso-DEHH , ralso-METX , ralso-PCAD , ralso-PCAD2 , ralso-PHAZ , ralso-PHBC , ralso-q8xsf9 , ralso-q8xta6 , ralso-q8xtf1 , ralso-RSC0055 , ralso-RSC0206 , ralso-RSC0268 , ralso-RSC0328 , ralso-RSC0439 , ralso-RSC0563 , ralso-RSC0604 , ralso-RSC0827 , ralso-RSC1003 , ralso-RSC1125 , ralso-RSC1135 , ralso-RSC1344 , ralso-RSC1396 , ralso-RSC1561 , ralso-RSC1573 , ralso-RSC1770 , ralso-RSC1772 , ralso-RSC1804 , ralso-RSC1811 , ralso-RSC1841 , ralso-RSC1887 , ralso-RSC2082 , ralso-RSC2149 , ralso-RSC2228 , ralso-RSC2317 , ralso-RSC2319 , ralso-RSC2328 , ralso-RSC2593 , ralso-RSC2781 , ralso-RSC3165 , ralso-RSC3312 , ralso-RSC3346 , ralso-RSC3406 , ralso-RSP0196 , ralso-RSP0232 , ralso-RSP0642 , ralso-RSP0769 , ralso-RSP0780 , ralso-RSP0790 , ralso-RSP0795 , ralso-RSP1108 , ralso-RSP1111 , ralso-RSP1148 , ralso-RSP1167 , ralso-RSP1229 , ralso-RSP1248 , ralso-RSP1339 , ralso-RSP1355 , ralso-RSP1418 , ralso-RSP1419 , ralso-RSP1422 , ralso-RSP1429 , ralso-RSP1435 , ralso-RSP1484 , ralso-RSP1521 , ralso-hboh , ralso-q8y0t3

Title : Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana - Salanoubat_2000_Nature_408_820
Author(s) : Salanoubat M , Lemcke K , Rieger M , Ansorge W , Unseld M , Fartmann B , Valle G , Blocker H , Perez-Alonso M , Obermaier B , Delseny M , Boutry M , Grivell LA , Mache R , Puigdomenech P , de Simone V , Choisne N , Artiguenave F , Robert C , Brottier P , Wincker P , Cattolico L , Weissenbach J , Saurin W , Quetier F , Schafer M , Muller-Auer S , Gabel C , Fuchs M , Benes V , Wurmbach E , Drzonek H , Erfle H , Jordan N , Bangert S , Wiedelmann R , Kranz H , Voss H , Holland R , Brandt P , Nyakatura G , Vezzi A , D'Angelo M , Pallavicini A , Toppo S , Simionati B , Conrad A , Hornischer K , Kauer G , Lohnert TH , Nordsiek G , Reichelt J , Scharfe M , Schon O , Bargues M , Terol J , Climent J , Navarro P , Collado C , Perez-Perez A , Ottenwalder B , Duchemin D , Cooke R , Laudie M , Berger-Llauro C , Purnelle B , Masuy D , de Haan M , Maarse AC , Alcaraz JP , Cottet A , Casacuberta E , Monfort A , Argiriou A , Flores M , Liguori R , Vitale D , Mannhaupt G , Haase D , Schoof H , Rudd S , Zaccaria P , Mewes HW , Mayer KF , Kaul S , Town CD , Koo HL , Tallon LJ , Jenkins J , Rooney T , Rizzo M , Walts A , Utterback T , Fujii CY , Shea TP , Creasy TH , Haas B , Maiti R , Wu D , Peterson J , Van Aken S , Pai G , Militscher J , Sellers P , Gill JE , Feldblyum TV , Preuss D , Lin X , Nierman WC , Salzberg SL , White O , Venter JC , Fraser CM , Kaneko T , Nakamura Y , Sato S , Kato T , Asamizu E , Sasamoto S , Kimura T , Idesawa K , Kawashima K , Kishida Y , Kiyokawa C , Kohara M , Matsumoto M , Matsuno A , Muraki A , Nakayama S , Nakazaki N , Shinpo S , Takeuchi C , Wada T , Watanabe A , Yamada M , Yasuda M , Tabata S
Ref : Nature , 408 :820 , 2000
Abstract : Arabidopsis thaliana is an important model system for plant biologists. In 1996 an international collaboration (the Arabidopsis Genome Initiative) was formed to sequence the whole genome of Arabidopsis and in 1999 the sequence of the first two chromosomes was reported. The sequence of the last three chromosomes and an analysis of the whole genome are reported in this issue. Here we present the sequence of chromosome 3, organized into four sequence segments (contigs). The two largest (13.5 and 9.2 Mb) correspond to the top (long) and the bottom (short) arms of chromosome 3, and the two small contigs are located in the genetically defined centromere. This chromosome encodes 5,220 of the roughly 25,500 predicted protein-coding genes in the genome. About 20% of the predicted proteins have significant homology to proteins in eukaryotic genomes for which the complete sequence is available, pointing to important conserved cellular functions among eukaryotes.
ESTHER : Salanoubat_2000_Nature_408_820
PubMedSearch : Salanoubat_2000_Nature_408_820
PubMedID: 11130713
Gene_locus related to this paper: arath-MES17 , arath-AT3G12150 , arath-At3g61680 , arath-AT3g62590 , arath-CXE12 , arath-eds1 , arath-SCP25 , arath-F1P2.110 , arath-F1P2.140 , arath-F11F8.28 , arath-F14D17.80 , arath-F16B3.4 , arath-SCP27 , arath-At3g50790 , arath-At3g05600 , arath-PAD4 , arath-At3g51000 , arath-SCP16 , arath-gid1 , arath-GID1B , arath-Q9LUG8 , arath-Q84JS1 , arath-Q9SFF6 , arath-q9m236 , arath-q9sr22 , arath-q9sr23 , arath-SCP7 , arath-SCP14 , arath-SCP15 , arath-SCP17 , arath-SCP36 , arath-SCP37 , arath-SCP39 , arath-SCP40 , arath-SCP49 , arath-T19F11.2