Anthouard V

References (15)

Title : Genome sequence of the stramenopile Blastocystis, a human anaerobic parasite - Denoeud_2011_Genome.Biol_12_R29
Author(s) : Denoeud F , Roussel M , Noel B , Wawrzyniak I , Da Silva C , Diogon M , Viscogliosi E , Brochier-Armanet C , Couloux A , Poulain J , Segurens B , Anthouard V , Texier C , Blot N , Poirier P , Ng GC , Tan KS , Artiguenave F , Jaillon O , Aury JM , Delbac F , Wincker P , Vivares CP , El Alaoui H
Ref : Genome Biol , 12 :R29 , 2011
Abstract : BACKGROUND: Blastocystis is a highly prevalent anaerobic eukaryotic parasite of humans and animals that is associated with various gastrointestinal and extraintestinal disorders. Epidemiological studies have identified different subtypes but no one subtype has been definitively correlated with disease.
RESULTS: Here we report the 18.8 Mb genome sequence of a Blastocystis subtype 7 isolate, which is the smallest stramenopile genome sequenced to date. The genome is highly compact and contains intriguing rearrangements. Comparisons with other available stramenopile genomes (plant pathogenic oomycete and diatom genomes) revealed effector proteins potentially involved in the adaptation to the intestinal environment, which were likely acquired via horizontal gene transfer. Moreover, Blastocystis living in anaerobic conditions harbors mitochondria-like organelles. An incomplete oxidative phosphorylation chain, a partial Krebs cycle, amino acid and fatty acid metabolisms and an iron-sulfur cluster assembly are all predicted to occur in these organelles. Predicted secretory proteins possess putative activities that may alter host physiology, such as proteases, protease-inhibitors, immunophilins and glycosyltransferases. This parasite also possesses the enzymatic machinery to tolerate oxidative bursts resulting from its own metabolism or induced by the host immune system.
CONCLUSIONS: This study provides insights into the genome architecture of this unusual stramenopile. It also proposes candidate genes with which to study the physiopathology of this parasite and thus may lead to further investigations into Blastocystis-host interactions.
ESTHER : Denoeud_2011_Genome.Biol_12_R29
PubMedSearch : Denoeud_2011_Genome.Biol_12_R29
PubMedID: 21439036
Gene_locus related to this paper: blaho-d8m103 , blaho-d8lw93

Title : Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations - Rouxel_2011_Nat.Commun_2_202
Author(s) : Rouxel T , Grandaubert J , Hane JK , Hoede C , van de Wouw AP , Couloux A , Dominguez V , Anthouard V , Bally P , Bourras S , Cozijnsen AJ , Ciuffetti LM , Degrave A , Dilmaghani A , Duret L , Fudal I , Goodwin SB , Gout L , Glaser N , Linglin J , Kema GH , Lapalu N , Lawrence CB , May K , Meyer M , Ollivier B , Poulain J , Schoch CL , Simon A , Spatafora JW , Stachowiak A , Turgeon BG , Tyler BM , Vincent D , Weissenbach J , Amselem J , Quesneville H , Oliver RP , Wincker P , Balesdent MH , Howlett BJ
Ref : Nat Commun , 2 :202 , 2011
Abstract : Fungi are of primary ecological, biotechnological and economic importance. Many fundamental biological processes that are shared by animals and fungi are studied in fungi due to their experimental tractability. Many fungi are pathogens or mutualists and are model systems to analyse effector genes and their mechanisms of diversification. In this study, we report the genome sequence of the phytopathogenic ascomycete Leptosphaeria maculans and characterize its repertoire of protein effectors. The L. maculans genome has an unusual bipartite structure with alternating distinct guanine and cytosine-equilibrated and adenine and thymine (AT)-rich blocks of homogenous nucleotide composition. The AT-rich blocks comprise one-third of the genome and contain effector genes and families of transposable elements, both of which are affected by repeat-induced point mutation, a fungal-specific genome defence mechanism. This genomic environment for effectors promotes rapid sequence diversification and underpins the evolutionary potential of the fungus to adapt rapidly to novel host-derived constraints.
ESTHER : Rouxel_2011_Nat.Commun_2_202
PubMedSearch : Rouxel_2011_Nat.Commun_2_202
PubMedID: 21326234
Gene_locus related to this paper: lepmc-q6q891 , lepmj-e4zh04 , lepmj-e4ziv6 , lepmj-e4zju4 , lepmj-e4zqu4 , lepmj-e4zvh3 , lepmj-e4zvl4 , lepmj-e4zx66 , lepmj-e5a0i2 , lepmj-e5a510 , lepmj-e5aau5 , lepmj-e5acd1 , lepmj-e5a4g5 , lepmj-e4zhg2 , lepmj-e4zuw5 , lepmj-e5a2e0 , lepmj-e4zpv2 , lepmj-e4zxp4 , lepmj-e4zpy5 , lepmj-e5ae17 , lepmj-e4ziv2 , lepmj-e5a374 , lepmj-e5ab81 , lepmj-e4zgy1 , lepmj-e4zg43 , lepmj-kex1 , lepmj-cbpya

Title : Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea - Amselem_2011_PLoS.Genet_7_e1002230
Author(s) : Amselem J , Cuomo CA , van Kan JA , Viaud M , Benito EP , Couloux A , Coutinho PM , de Vries RP , Dyer PS , Fillinger S , Fournier E , Gout L , Hahn M , Kohn L , Lapalu N , Plummer KM , Pradier JM , Quevillon E , Sharon A , Simon A , ten Have A , Tudzynski B , Tudzynski P , Wincker P , Andrew M , Anthouard V , Beever RE , Beffa R , Benoit I , Bouzid O , Brault B , Chen Z , Choquer M , Collemare J , Cotton P , Danchin EG , Da Silva C , Gautier A , Giraud C , Giraud T , Gonzalez C , Grossetete S , Guldener U , Henrissat B , Howlett BJ , Kodira C , Kretschmer M , Lappartient A , Leroch M , Levis C , Mauceli E , Neuveglise C , Oeser B , Pearson M , Poulain J , Poussereau N , Quesneville H , Rascle C , Schumacher J , Segurens B , Sexton A , Silva E , Sirven C , Soanes DM , Talbot NJ , Templeton M , Yandava C , Yarden O , Zeng Q , Rollins JA , Lebrun MH , Dickman M
Ref : PLoS Genet , 7 :e1002230 , 2011
Abstract : Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38-39 Mb genomes include 11,860-14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea-specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops.
ESTHER : Amselem_2011_PLoS.Genet_7_e1002230
PubMedSearch : Amselem_2011_PLoS.Genet_7_e1002230
PubMedID: 21876677
Gene_locus related to this paper: botci-cutas , botci-q6rki2 , botf4-g2y7k8 , botfb-dapb , botfu-g2xyd8 , botfu-g2ynh8 , scls1-a7e814 , scls1-a7edc9 , scls1-a7edh1 , scls1-a7emm0 , scls1-a7eti8 , scls1-a7eu48 , scls1-a7f208 , scls1-dapb , botf4-g2xqp7 , scls1-a7eqq8 , botf4-g2xqc6 , scls1-a7ebs4 , botf4-g2xn51 , scls1-a7f5m9 , botf4-g2xti4 , botf4-g2xtu7 , botf4-g2yfp1 , scls1-a7f534 , botf4-g2yys3 , scls1-a7erz9 , botf4-g2y037 , botf4-g2y0e1 , scls1-a7f706 , scls1-a7ewt6 , botf4-g2yuj6 , botf1-m7u3d1 , botf1-m7u430 , botf1-m7tei8 , botf1-m7u0w9 , botf1-m7tij6 , botf1-m7u819 , botf1-m7u6d8 , botf1-m7tzd4 , botf1-m7tqd7 , botf1-m7tyz9 , botf1-m7unl9 , botf1-m7u429 , botf1-m7u4s5 , botf1-m7ul92 , botf1-m7tx42 , botf1-m7u9h4 , botf1-m7u187 , botf1-m7uz64 , botf1-m7u4q4 , botf1-m7u2f6 , botf1-m7tt59 , botf1-m7v3h2 , botf1-m7u6c9 , botf1-m7tud9 , botf1-m7u309 , scls1-a7et87 , botf4-g2ylt4 , scls1-a7f5a0 , scls1-a7f900 , botf4-g2yib9 , scls1-a7f3m9 , scls1-a7er46 , botf4-g2y3y4 , botf4-g2xyy5 , botf1-m7uct5 , scls1-a7ea78 , scls1-kex1 , scls1-cbpya , botfb-cbpya , scls1-a7ecx1

Title : Perigord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis - Martin_2010_Nature_464_1033
Author(s) : Martin F , Kohler A , Murat C , Balestrini R , Coutinho PM , Jaillon O , Montanini B , Morin E , Noel B , Percudani R , Porcel B , Rubini A , Amicucci A , Amselem J , Anthouard V , Arcioni S , Artiguenave F , Aury JM , Ballario P , Bolchi A , Brenna A , Brun A , Buee M , Cantarel B , Chevalier G , Couloux A , Da Silva C , Denoeud F , Duplessis S , Ghignone S , Hilselberger B , Iotti M , Marcais B , Mello A , Miranda M , Pacioni G , Quesneville H , Riccioni C , Ruotolo R , Splivallo R , Stocchi V , Tisserant E , Viscomi AR , Zambonelli A , Zampieri E , Henrissat B , Lebrun MH , Paolocci F , Bonfante P , Ottonello S , Wincker P
Ref : Nature , 464 :1033 , 2010
Abstract : The Perigord black truffle (Tuber melanosporum Vittad.) and the Piedmont white truffle dominate today's truffle market. The hypogeous fruiting body of T. melanosporum is a gastronomic delicacy produced by an ectomycorrhizal symbiont endemic to calcareous soils in southern Europe. The worldwide demand for this truffle has fuelled intense efforts at cultivation. Identification of processes that condition and trigger fruit body and symbiosis formation, ultimately leading to efficient crop production, will be facilitated by a thorough analysis of truffle genomic traits. In the ectomycorrhizal Laccaria bicolor, the expansion of gene families may have acted as a 'symbiosis toolbox'. This feature may however reflect evolution of this particular taxon and not a general trait shared by all ectomycorrhizal species. To get a better understanding of the biology and evolution of the ectomycorrhizal symbiosis, we report here the sequence of the haploid genome of T. melanosporum, which at approximately 125 megabases is the largest and most complex fungal genome sequenced so far. This expansion results from a proliferation of transposable elements accounting for approximately 58% of the genome. In contrast, this genome only contains approximately 7,500 protein-coding genes with very rare multigene families. It lacks large sets of carbohydrate cleaving enzymes, but a few of them involved in degradation of plant cell walls are induced in symbiotic tissues. The latter feature and the upregulation of genes encoding for lipases and multicopper oxidases suggest that T. melanosporum degrades its host cell walls during colonization. Symbiosis induces an increased expression of carbohydrate and amino acid transporters in both L. bicolor and T. melanosporum, but the comparison of genomic traits in the two ectomycorrhizal fungi showed that genetic predispositions for symbiosis-'the symbiosis toolbox'-evolved along different ways in ascomycetes and basidiomycetes.
ESTHER : Martin_2010_Nature_464_1033
PubMedSearch : Martin_2010_Nature_464_1033
PubMedID: 20348908
Gene_locus related to this paper: 9pezi-d5g8f4 , 9pezi-d5gi84 , 9pezi-d5gph4 , tubmm-d5g4w2 , tubmm-d5g4w3 , tubmm-d5g4w6 , tubmm-d5g5r5 , tubmm-d5g8z4 , tubmm-d5g938 , tubmm-d5ga65 , tubmm-d5gcz1 , tubmm-d5giz0 , tubmm-d5gkr8 , tubmm-d5glm4 , tubmm-d5gnw0 , tubmm-dapb , tubmm-d5gfj1 , tubmm-d5gpf4 , tubmm-TmEst2 , tubmm-TmEst1 , tubmm-TmEst3 , 9pezi-a0a292py12 , tubmm-kex1

Title : Plasticity of animal genome architecture unmasked by rapid evolution of a pelagic tunicate - Denoeud_2010_Science_330_1381
Author(s) : Denoeud F , Henriet S , Mungpakdee S , Aury JM , Da Silva C , Brinkmann H , Mikhaleva J , Olsen LC , Jubin C , Canestro C , Bouquet JM , Danks G , Poulain J , Campsteijn C , Adamski M , Cross I , Yadetie F , Muffato M , Louis A , Butcher S , Tsagkogeorga G , Konrad A , Singh S , Jensen MF , Huynh Cong E , Eikeseth-Otteraa H , Noel B , Anthouard V , Porcel BM , Kachouri-Lafond R , Nishino A , Ugolini M , Chourrout P , Nishida H , Aasland R , Huzurbazar S , Westhof E , Delsuc F , Lehrach H , Reinhardt R , Weissenbach J , Roy SW , Artiguenave F , Postlethwait JH , Manak JR , Thompson EM , Jaillon O , Du Pasquier L , Boudinot P , Liberles DA , Volff JN , Philippe H , Lenhard B , Roest Crollius H , Wincker P , Chourrout D
Ref : Science , 330 :1381 , 2010
Abstract : Genomes of animals as different as sponges and humans show conservation of global architecture. Here we show that multiple genomic features including transposon diversity, developmental gene repertoire, physical gene order, and intron-exon organization are shattered in the tunicate Oikopleura, belonging to the sister group of vertebrates and retaining chordate morphology. Ancestral architecture of animal genomes can be deeply modified and may therefore be largely nonadaptive. This rapidly evolving animal lineage thus offers unique perspectives on the level of genome plasticity. It also illuminates issues as fundamental as the mechanisms of intron gain.
ESTHER : Denoeud_2010_Science_330_1381
PubMedSearch : Denoeud_2010_Science_330_1381
PubMedID: 21097902
Gene_locus related to this paper: oikdi-ACHE , oikdi-cholike.1 , oikdi-cholike.2 , oikdi-e4wug8 , oikdi-e4ww04 , oikdi-e4wxm9 , oikdi-e4x0y9 , oikdi-e4x1t6 , oikdi-e4x2c7.1 , oikdi-e4x2c7.2 , oikdi-e4x4v7 , oikdi-e4x5i7 , oikdi-e4x5s6 , oikdi-e4x6c7 , oikdi-e4x6i0 , oikdi-e4x7y6 , oikdi-e4xa91 , oikdi-e4xe86 , oikdi-e4xeg3 , oikdi-e4xgg8 , oikdi-e4xiw0 , oikdi-e4xk51 , oikdi-e4xl53 , oikdi-e4xm24 , oikdi-e4xm43 , oikdi-e4xn79 , oikdi-e4xp62 , oikdi-e4xpy1 , oikdi-e4xqm4 , oikdi-e4xtm1 , oikdi-e4xug7 , oikdi-e4xv59 , oikdi-e4xw55 , oikdi-e4xwt6 , oikdi-e4xxh8 , oikdi-e4y5n1 , oikdi-e4y7j8 , oikdi-e4y8s7 , oikdi-e4ya76 , oikdi-e4ydw0 , oikdi-e4yi65 , oikdi-e4yp15 , oikdi-e4yp69 , oikdi-e4yst1 , oikdi-e4yvr0 , oikdi-e4yvu0 , oikdi-e4x630 , oikdi-e4ykb2 , oikdi-e4wt97 , oikdi-e4ws23

Title : The Ectocarpus genome and the independent evolution of multicellularity in brown algae - Cock_2010_Nature_465_617
Author(s) : Cock JM , Sterck L , Rouze P , Scornet D , Allen AE , Amoutzias G , Anthouard V , Artiguenave F , Aury JM , Badger JH , Beszteri B , Billiau K , Bonnet E , Bothwell JH , Bowler C , Boyen C , Brownlee C , Carrano CJ , Charrier B , Cho GY , Coelho SM , Collen J , Corre E , Da Silva C , Delage L , Delaroque N , Dittami SM , Doulbeau S , Elias M , Farnham G , Gachon CM , Gschloessl B , Heesch S , Jabbari K , Jubin C , Kawai H , Kimura K , Kloareg B , Kupper FC , Lang D , Le Bail A , LeBlanc C , Lerouge P , Lohr M , Lopez PJ , Martens C , Maumus F , Michel G , Miranda-Saavedra D , Morales J , Moreau H , Motomura T , Nagasato C , Napoli CA , Nelson DR , Nyvall-Collen P , Peters AF , Pommier C , Potin P , Poulain J , Quesneville H , Read B , Rensing SA , Ritter A , Rousvoal S , Samanta M , Samson G , Schroeder DC , Segurens B , Strittmatter M , Tonon T , Tregear JW , Valentin K , von Dassow P , Yamagishi T , Van de Peer Y , Wincker P
Ref : Nature , 465 :617 , 2010
Abstract : Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae, closely related to the kelps (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic approaches to explore these and other aspects of brown algal biology further.
ESTHER : Cock_2010_Nature_465_617
PubMedSearch : Cock_2010_Nature_465_617
PubMedID: 20520714
Gene_locus related to this paper: ectsi-d7fm61 , ectsi-d7fs16 , ectsi-d7fsv3 , ectsi-d7fte8 , ectsi-d7fux6 , ectsi-d7fvr0 , ectsi-d7fvu4 , ectsi-d7fwk0 , ectsi-d7fyh7 , ectsi-d7g0w7 , ectsi-d7g6g5 , ectsi-d7g484 , ectsi-d7g686 , ectsi-d8lca9 , ectsi-d8lfv2 , ectsi-d8lqg6 , ectsi-d8ltj9 , ectsi-d7fjz2 , ectsi-d7g376

Title : Genome analysis and genome-wide proteomics of Thermococcus gammatolerans, the most radioresistant organism known amongst the Archaea - Zivanovic_2009_Genome.Biol_10_R70
Author(s) : Zivanovic Y , Armengaud J , Lagorce A , Leplat C , Guerin P , Dutertre M , Anthouard V , Forterre P , Wincker P , Confalonieri F
Ref : Genome Biol , 10 :R70 , 2009
Abstract : BACKGROUND: Thermococcus gammatolerans was isolated from samples collected from hydrothermal chimneys. It is one of the most radioresistant organisms known amongst the Archaea. We report the determination and annotation of its complete genome sequence, its comparison with other Thermococcales genomes, and a proteomic analysis.
RESULTS: T. gammatolerans has a circular chromosome of 2.045 Mbp without any extra-chromosomal elements, coding for 2,157 proteins. A thorough comparative genomics analysis revealed important but unsuspected genome plasticity differences between sequenced Thermococcus and Pyrococcus species that could not be attributed to the presence of specific mobile elements. Two virus-related regions, tgv1 and tgv2, are the only mobile elements identified in this genome. A proteogenome analysis was performed by a shotgun liquid chromatography-tandem mass spectrometry approach, allowing the identification of 10,931 unique peptides corresponding to 951 proteins. This information concurrently validates the accuracy of the genome annotation. Semi-quantification of proteins by spectral count was done on exponential- and stationary-phase cells. Insights into general catabolism, hydrogenase complexes, detoxification systems, and the DNA repair toolbox of this archaeon are revealed through this genome and proteome analysis.
CONCLUSIONS: This work is the first archaeal proteome investigation done at the stage of primary genome annotation. This archaeon is shown to use a large variety of metabolic pathways even under a rich medium growth condition. This proteogenomic study also indicates that the high radiotolerance of T. gammatolerans is probably due to proteins that remain to be characterized rather than a larger arsenal of known DNA repair enzymes.
ESTHER : Zivanovic_2009_Genome.Biol_10_R70
PubMedSearch : Zivanovic_2009_Genome.Biol_10_R70
PubMedID: 19558674
Gene_locus related to this paper: thegj-c5a5e0 , thegj-c5a5m2

Title : Comparative genomics of protoploid Saccharomycetaceae - Souciet_2009_Genome.Res_19_1696
Author(s) : Souciet JL , Dujon B , Gaillardin C , Johnston M , Baret PV , Cliften P , Sherman DJ , Weissenbach J , Westhof E , Wincker P , Jubin C , Poulain J , Barbe V , Segurens B , Artiguenave F , Anthouard V , Vacherie B , Val ME , Fulton RS , Minx P , Wilson R , Durrens P , Jean G , Marck C , Martin T , Nikolski M , Rolland T , Seret ML , Casaregola S , Despons L , Fairhead C , Fischer G , Lafontaine I , Leh V , Lemaire M , De Montigny J , Neuveglise C , Thierry A , Blanc-Lenfle I , Bleykasten C , Diffels J , Fritsch E , Frangeul L , Goeffon A , Jauniaux N , Kachouri-Lafond R , Payen C , Potier S , Pribylova L , Ozanne C , Richard GF , Sacerdot C , Straub ML , Talla E
Ref : Genome Res , 19 :1696 , 2009
Abstract : Our knowledge of yeast genomes remains largely dominated by the extensive studies on Saccharomyces cerevisiae and the consequences of its ancestral duplication, leaving the evolution of the entire class of hemiascomycetes only partly explored. We concentrate here on five species of Saccharomycetaceae, a large subdivision of hemiascomycetes, that we call "protoploid" because they diverged from the S. cerevisiae lineage prior to its genome duplication. We determined the complete genome sequences of three of these species: Kluyveromyces (Lachancea) thermotolerans and Saccharomyces (Lachancea) kluyveri (two members of the newly described Lachancea clade), and Zygosaccharomyces rouxii. We included in our comparisons the previously available sequences of Kluyveromyces lactis and Ashbya (Eremothecium) gossypii. Despite their broad evolutionary range and significant individual variations in each lineage, the five protoploid Saccharomycetaceae share a core repertoire of approximately 3300 protein families and a high degree of conserved synteny. Synteny blocks were used to define gene orthology and to infer ancestors. Far from representing minimal genomes without redundancy, the five protoploid yeasts contain numerous copies of paralogous genes, either dispersed or in tandem arrays, that, altogether, constitute a third of each genome. Ancient, conserved paralogs as well as novel, lineage-specific paralogs were identified.
ESTHER : Souciet_2009_Genome.Res_19_1696
PubMedSearch : Souciet_2009_Genome.Res_19_1696
PubMedID: 19525356
Gene_locus related to this paper: lactc-c5dci9 , lactc-c5ddi5 , lactc-c5dew5 , lactc-c5dez1 , lactc-c5df11 , lactc-c5dfh7 , lactc-c5dgd1 , lactc-c5dif7 , lactc-c5din7 , lactc-c5dja0 , lactc-c5dm95 , lactc-c5dn06 , lactc-c5dnn9 , lactc-c5e2g8 , lactc-c5e3n5 , lactc-c5e375 , zygrc-c5drr0 , zygrc-c5dvh0 , zygrc-c5dvl2 , zygrc-c5dvx0 , zygrc-c5dvz8 , zygrc-c5dx83 , zygrc-c5dxn5 , zygrc-c5dxq9 , zygrc-c5e0w1 , zygrc-c5e1e4 , zygrc-c5e1h2 , zygro-a0a1q2zt01 , 9sach-a0a0p1kuu1 , lactc-kex1 , zygrc-kex1

Title : The genome sequence of the model ascomycete fungus Podospora anserina - Espagne_2008_Genome.Biol_9_R77
Author(s) : Espagne E , Lespinet O , Malagnac F , Da Silva C , Jaillon O , Porcel BM , Couloux A , Aury JM , Segurens B , Poulain J , Anthouard V , Grossetete S , Khalili H , Coppin E , Dequard-Chablat M , Picard M , Contamine V , Arnaise S , Bourdais A , Berteaux-Lecellier V , Gautheret D , de Vries RP , Battaglia E , Coutinho PM , Danchin EG , Henrissat B , Khoury RE , Sainsard-Chanet A , Boivin A , Pinan-Lucarre B , Sellem CH , Debuchy R , Wincker P , Weissenbach J , Silar P
Ref : Genome Biol , 9 :R77 , 2008
Abstract : BACKGROUND: The dung-inhabiting ascomycete fungus Podospora anserina is a model used to study various aspects of eukaryotic and fungal biology, such as ageing, prions and sexual development. RESULTS: We present a 10X draft sequence of P. anserina genome, linked to the sequences of a large expressed sequence tag collection. Similar to higher eukaryotes, the P. anserina transcription/splicing machinery generates numerous non-conventional transcripts. Comparison of the P. anserina genome and orthologous gene set with the one of its close relatives, Neurospora crassa, shows that synteny is poorly conserved, the main result of evolution being gene shuffling in the same chromosome. The P. anserina genome contains fewer repeated sequences and has evolved new genes by duplication since its separation from N. crassa, despite the presence of the repeat induced point mutation mechanism that mutates duplicated sequences. We also provide evidence that frequent gene loss took place in the lineages leading to P. anserina and N. crassa. P. anserina contains a large and highly specialized set of genes involved in utilization of natural carbon sources commonly found in its natural biotope. It includes genes potentially involved in lignin degradation and efficient cellulose breakdown. CONCLUSION: The features of the P. anserina genome indicate a highly dynamic evolution since the divergence of P. anserina and N. crassa, leading to the ability of the former to use specific complex carbon sources that match its needs in its natural biotope.
ESTHER : Espagne_2008_Genome.Biol_9_R77
PubMedSearch : Espagne_2008_Genome.Biol_9_R77
PubMedID: 18460219
Gene_locus related to this paper: podan-b2a8u1 , podan-b2a9c4 , podan-b2a9k6 , podan-b2aa90 , podan-b2ab33 , podan-b2abs0 , podan-b2ac17 , podan-b2ack2 , podan-b2ad07 , podan-b2adj6 , podan-b2adk0 , podan-b2ae59 , podan-b2aee7 , podan-b2af51 , podan-b2afn5 , podan-b2afu6 , podan-b2akq7 , podan-b2aly0 , podan-b2am11 , podan-b2an24 , podan-b2ank1 , podan-b2apa8 , podan-b2api8 , podan-b2apj6 , podan-b2arl9 , podan-b2arz7 , podan-b2ase4 , podan-b2atn0 , podan-b2au46 , podan-b2aun9 , podan-b2av47 , podan-b2ava6 , podan-b2avm3 , podan-b2avu5 , podan-b2avx3 , podan-b2awk8 , podan-b2axk2 , podan-b2axz2 , podan-b2b1p7 , podan-b2b5e4 , podan-b2b6n7 , podan-b2b069 , podan-b2b073 , podan-b2b395 , podan-dapb , podan-b2afr0 , podan-b2a9k8 , podan-b2atb3 , podan-b2aca3 , podan-b2arv3 , podan-b2ank5 , podan-b2ax54 , podan-b2ad56 , podan-b2anm1 , podan-b2aya1 , podan-b2b164 , podan-a0a090d4h4 , podan-a0a090ccl8 , podan-b2b5p4 , podan-b2azp1 , podan-b2af75 , podan-b2alm5 , podan-b2ass5 , podan-b2aez8 , podan-kex1 , podan-cbpya

Title : The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla - Jaillon_2007_Nature_449_463
Author(s) : Jaillon O , Aury JM , Noel B , Policriti A , Clepet C , Casagrande A , Choisne N , Aubourg S , Vitulo N , Jubin C , Vezzi A , Legeai F , Hugueney P , Dasilva C , Horner D , Mica E , Jublot D , Poulain J , Bruyere C , Billault A , Segurens B , Gouyvenoux M , Ugarte E , Cattonaro F , Anthouard V , Vico V , Del Fabbro C , Alaux M , Di Gaspero G , Dumas V , Felice N , Paillard S , Juman I , Moroldo M , Scalabrin S , Canaguier A , Le Clainche I , Malacrida G , Durand E , Pesole G , Laucou V , Chatelet P , Merdinoglu D , Delledonne M , Pezzotti M , Lecharny A , Scarpelli C , Artiguenave F , Pe ME , Valle G , Morgante M , Caboche M , Adam-Blondon AF , Weissenbach J , Quetier F , Wincker P
Ref : Nature , 449 :463 , 2007
Abstract : The analysis of the first plant genomes provided unexpected evidence for genome duplication events in species that had previously been considered as true diploids on the basis of their genetics. These polyploidization events may have had important consequences in plant evolution, in particular for species radiation and adaptation and for the modulation of functional capacities. Here we report a high-quality draft of the genome sequence of grapevine (Vitis vinifera) obtained from a highly homozygous genotype. The draft sequence of the grapevine genome is the fourth one produced so far for flowering plants, the second for a woody species and the first for a fruit crop (cultivated for both fruit and beverage). Grapevine was selected because of its important place in the cultural heritage of humanity beginning during the Neolithic period. Several large expansions of gene families with roles in aromatic features are observed. The grapevine genome has not undergone recent genome duplication, thus enabling the discovery of ancestral traits and features of the genetic organization of flowering plants. This analysis reveals the contribution of three ancestral genomes to the grapevine haploid content. This ancestral arrangement is common to many dicotyledonous plants but is absent from the genome of rice, which is a monocotyledon. Furthermore, we explain the chronology of previously described whole-genome duplication events in the evolution of flowering plants.
ESTHER : Jaillon_2007_Nature_449_463
PubMedSearch : Jaillon_2007_Nature_449_463
PubMedID: 17721507
Gene_locus related to this paper: vitvi-a5b6n6 , vitvi-a5b7c0 , vitvi-a5b8l9 , vitvi-a5bji4 , vitvi-a5bxd7 , vitvi-a5c1g2 , vitvi-a5c8p7 , vitvi-a7ntu2 , vitvi-a7pnb4 , vitvi-a7pus9 , vitvi-a7q3d1 , vitvi-a7qpz3 , vitvi-BIG8.1 , vitvi-d7sqb8 , vitvi-d7ssp2 , vitvi-d7sx57 , vitvi-d7t734 , vitvi-d7t940 , vitvi-d7tef1 , vitvi-d7tg96 , vitvi-d7tle9 , vitvi-d7tmb8 , vitvi-d7tpk8 , vitvi-d7tve2 , vitvi-d7tvr0 , vitvi-d7ubd6 , vitvi-f6hhx5 , vitvi-f6hi76 , vitvi-f6hqe0 , vitvi-f6hzf1.1 , vitvi-f6hzf1.2 , vitvi-d7ssd7 , vitvi-d7ssd8 , vitvi-d7ssd9 , vitvi-d7u935 , vitvi-f6gyw1 , vitvi-f6gyw2 , vitvi-f6gyw4 , vitvi-f6hqf1 , vitvi-f6hqf4 , vitvi-d7tum4 , vitvi-d7tba3 , vitvi-d7stm8 , vitvi-d7t3j3 , vitvi-d7uce5 , vitvi-f6he55 , vitvi-d7thp4 , vitvi-d7tfe6 , vitvi-e0cv10 , vitvi-f6gtp7 , vitvi-f6hva3 , vitvi-d7tqu0 , vitvi-f6hqq0 , vitvi-d7tci5 , vitvi-d7sut7 , vitvi-d7sut6 , vitvi-f6h317 , vitvi-f6h318 , vitvi-f6hsf1 , vitvi-f6hqd1 , vitvi-f6hqd0 , vitvi-f6hfp6 , vitvi-d7u2i4 , vitvi-f6gsx7 , vitvi-d7si01 , vitvi-d7si06 , vitvi-f6hz08 , vitvi-d7tr61 , vitvi-e0crl0 , vitvi-f6hrz4 , vitvi-f6i7l0

Title : Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia - Aury_2006_Nature_444_171
Author(s) : Aury JM , Jaillon O , Duret L , Noel B , Jubin C , Porcel BM , Segurens B , Daubin V , Anthouard V , Aiach N , Arnaiz O , Billaut A , Beisson J , Blanc I , Bouhouche K , Camara F , Duharcourt S , Guigo R , Gogendeau D , Katinka M , Keller AM , Kissmehl R , Klotz C , Koll F , Le Mouel A , Lepere G , Malinsky S , Nowacki M , Nowak JK , Plattner H , Poulain J , Ruiz F , Serrano V , Zagulski M , Dessen P , Betermier M , Weissenbach J , Scarpelli C , Schachter V , Sperling L , Meyer E , Cohen J , Wincker P
Ref : Nature , 444 :171 , 2006
Abstract : The duplication of entire genomes has long been recognized as having great potential for evolutionary novelties, but the mechanisms underlying their resolution through gene loss are poorly understood. Here we show that in the unicellular eukaryote Paramecium tetraurelia, a ciliate, most of the nearly 40,000 genes arose through at least three successive whole-genome duplications. Phylogenetic analysis indicates that the most recent duplication coincides with an explosion of speciation events that gave rise to the P. aurelia complex of 15 sibling species. We observed that gene loss occurs over a long timescale, not as an initial massive event. Genes from the same metabolic pathway or protein complex have common patterns of gene loss, and highly expressed genes are over-retained after all duplications. The conclusion of this analysis is that many genes are maintained after whole-genome duplication not because of functional innovation but because of gene dosage constraints.
ESTHER : Aury_2006_Nature_444_171
PubMedSearch : Aury_2006_Nature_444_171
PubMedID: 17086204
Gene_locus related to this paper: parte-a0bds8 , parte-a0bga5 , parte-a0bnp2 , parte-a0bnt1 , parte-a0bpr4 , parte-a0btv5 , parte-a0byt1 , parte-a0bz94 , parte-a0c0b8 , parte-a0c0q4 , parte-a0c1z8 , parte-a0c3e0 , parte-a0c9f4 , parte-a0c962 , parte-a0cb90 , parte-a0cck1 , parte-a0cj40 , parte-a0cq13 , parte-a0cqw8 , parte-a0crq3 , parte-a0cu52 , parte-a0cur9 , parte-a0cxu4 , parte-a0cyf3 , parte-a0czs5 , parte-a0d1l8 , parte-a0d9i7 , parte-a0d589 , parte-a0de29 , parte-a0dem3 , parte-a0dg79 , parte-a0diq2 , parte-a0dk36 , parte-a0dkh0 , parte-a0dld4 , parte-a0dnw2 , parte-a0drp9 , parte-a0drx0 , parte-a0duj9 , parte-a0dvl0 , parte-a0dwm9 , parte-a0dy72 , parte-a0dz74 , parte-a0e0g8 , parte-a0e0z4 , parte-a0e1p0 , parte-a0e4m9 , parte-a0e8v9 , parte-a0e9r1 , parte-a0e581 , parte-a0ecy9 , parte-a0ecz4 , parte-a0ef67 , parte-a0d7k3

Title : Comparative analysis of BAC and whole genome shotgun sequences from an Anopheles gambiae region related to Plasmodium encapsulation - Eiglmeier_2005_Insect.Biochem.Mol.Biol_35_799
Author(s) : Eiglmeier K , Wincker P , Cattolico L , Anthouard V , Holm I , Eckenberg R , Quesneville H , Jaillon O , Collins FH , Weissenbach J , Brey PT , Roth CW
Ref : Insect Biochemistry & Molecular Biology , 35 :799 , 2005
Abstract : The only natural mechanism of malaria transmission in sub-Saharan Africa is the mosquito, generally Anopheles gambiae. Blocking malaria parasite transmission by stopping the development of Plasmodium in the insect vector would provide a useful alternative to the current methods of malaria control. Toward this end, it is important to understand the molecular basis of the malaria parasite refractory phenotype in An. gambiae mosquito strains. We have selected and sequenced six bacterial artificial chromosome (BAC) clones from the Pen-1 region that is the major quantitative trait locus involved in Plasmodium encapsulation. The sequence and the annotation of five overlapping BAC clones plus one adjacent, but not contiguous clone, totaling 585kb of genomic sequence from the centromeric end of the Pen-1 region of the PEST strain were compared to that of the genome sequence of the same strain produced by the whole genome shotgun technique. This project identified 23 putative mosquito genes plus putative copies of the retrotransposable elements BEL12 and TRANSIBN1_AG in the six BAC clones. Nineteen of the predicted genes are most similar to their Drosophila melanogaster homologs while one is more closely related to vertebrate genes. Comparison of these new BAC sequences plus previously published BAC sequences to the cognate region of the assembled genome sequence identified three retrotransposons present in one sequence version but not the other. One of these elements, Indy, has not been previously described. These observations provide evidence for the recent active transposition of these elements and demonstrate the plasticity of the Anopheles genome. The BAC sequences strongly support the public whole genome shotgun assembly and automatic annotation while also demonstrating the benefit of complementary genome sequences and of human curation. Importantly, the data demonstrate the differences in the genome sequence of an individual mosquito compared to that of a hypothetical, average genome sequence generated by whole genome shotgun assembly.
ESTHER : Eiglmeier_2005_Insect.Biochem.Mol.Biol_35_799
PubMedSearch : Eiglmeier_2005_Insect.Biochem.Mol.Biol_35_799
PubMedID: 15944077
Gene_locus related to this paper: anoga-agCG50851 , anoga-ebiG8504

Title : Genome evolution in yeasts - Dujon_2004_Nature_430_35
Author(s) : Dujon B , Sherman D , Fischer G , Durrens P , Casaregola S , Lafontaine I , De Montigny J , Marck C , Neuveglise C , Talla E , Goffard N , Frangeul L , Aigle M , Anthouard V , Babour A , Barbe V , Barnay S , Blanchin S , Beckerich JM , Beyne E , Bleykasten C , Boisrame A , Boyer J , Cattolico L , Confanioleri F , de Daruvar A , Despons L , Fabre E , Fairhead C , Ferry-Dumazet H , Groppi A , Hantraye F , Hennequin C , Jauniaux N , Joyet P , Kachouri R , Kerrest A , Koszul R , Lemaire M , Lesur I , Ma L , Muller H , Nicaud JM , Nikolski M , Oztas S , Ozier-Kalogeropoulos O , Pellenz S , Potier S , Richard GF , Straub ML , Suleau A , Swennen D , Tekaia F , Wesolowski-Louvel M , Westhof E , Wirth B , Zeniou-Meyer M , Zivanovic I , Bolotin-Fukuhara M , Thierry A , Bouchier C , Caudron B , Scarpelli C , Gaillardin C , Weissenbach J , Wincker P , Souciet JL
Ref : Nature , 430 :35 , 2004
Abstract : Identifying the mechanisms of eukaryotic genome evolution by comparative genomics is often complicated by the multiplicity of events that have taken place throughout the history of individual lineages, leaving only distorted and superimposed traces in the genome of each living organism. The hemiascomycete yeasts, with their compact genomes, similar lifestyle and distinct sexual and physiological properties, provide a unique opportunity to explore such mechanisms. We present here the complete, assembled genome sequences of four yeast species, selected to represent a broad evolutionary range within a single eukaryotic phylum, that after analysis proved to be molecularly as diverse as the entire phylum of chordates. A total of approximately 24,200 novel genes were identified, the translation products of which were classified together with Saccharomyces cerevisiae proteins into about 4,700 families, forming the basis for interspecific comparisons. Analysis of chromosome maps and genome redundancies reveal that the different yeast lineages have evolved through a marked interplay between several distinct molecular mechanisms, including tandem gene repeat formation, segmental duplication, a massive genome duplication and extensive gene loss.
ESTHER : Dujon_2004_Nature_430_35
PubMedSearch : Dujon_2004_Nature_430_35
PubMedID: 15229592
Gene_locus related to this paper: canga-apth1 , canga-ppme1 , canga-q6fik7 , canga-q6fiv5 , canga-q6fiw8 , canga-q6fj11 , canga-q6fjh6 , canga-q6fjl0 , canga-q6fjr8 , canga-q6fkj6 , canga-q6fkm9 , canga-q6fku7 , canga-q6fl14 , canga-q6flb5 , canga-q6fle9 , canga-q6flk8 , canga-q6fly1 , canga-q6fly9 , canga-q6fmz4 , canga-q6fnx4 , canga-q6fp28 , canga-q6fpa8 , canga-q6fpi6 , canga-q6fpv7 , canga-q6fpw6 , canga-q6fqj3 , canga-q6fr97 , canga-q6frt7 , canga-q6ftm9 , canga-q6ftu0 , canga-q6ftv9 , canga-q6ftz9 , canga-q6fuf8 , canga-q6fv41 , canga-q6fvu3 , canga-q6fw36 , canga-q6fw94 , canga-q6fwk6 , canga-q6fwm0 , canga-q6fxc7 , canga-q6fxd7 , debha-apth1 , debha-atg15 , debha-b5rtk1 , debha-b5rub4 , debha-b5rue8 , debha-b5rue9 , debha-bna7 , debha-ppme1 , debha-q6bgx3 , debha-q6bh69 , debha-q6bhb8 , debha-q6bhc1 , debha-q6bhd0 , debha-q6bhj7 , debha-q6bi97 , debha-q6biq7 , debha-q6bj53 , debha-q6bkd8 , debha-q6bks1 , debha-q6bky4 , debha-q6bm63 , debha-q6bmh3 , debha-q6bn89 , debha-q6bnj6 , debha-q6bp08 , debha-q6bpb4 , debha-q6bpc0 , debha-q6bpc6 , debha-q6bq10 , debha-q6bq11 , debha-q6bqd9 , debha-q6bqj6 , debha-q6br33 , debha-q6br93 , debha-q6brg1 , debha-q6brw7 , debha-q6bs23 , debha-q6bsc3 , debha-q6bsl8 , debha-q6bsx6 , debha-q6bta5 , debha-q6bty5 , debha-q6btz0 , debha-q6bu73 , debha-q6buk9 , debha-q6but7 , debha-q6bvc4 , debha-q6bvg4 , debha-q6bvg8 , debha-q6bvp4 , debha-q6bw82 , debha-q6bxr7 , debha-q6bxu9 , debha-q6bym5 , debha-q6byn7 , debha-q6bzj8 , debha-q6bzk2 , debha-q6bzm5 , klula-apth1 , klula-ppme1 , klula-q6cin9 , klula-q6ciu6 , klula-q6cj47 , klula-q6cjc8 , klula-q6cjq9 , klula-q6cjs1 , klula-q6cjv9 , klula-q6ckd7 , klula-q6ckk4 , klula-q6ckx4 , klula-q6cl20 , klula-q6clm1 , klula-q6cly8 , klula-q6clz7 , klula-q6cm48 , klula-q6cm49 , klula-q6cmt5 , klula-q6cn71 , klula-q6cnm1 , klula-q6cr74 , klula-q6cr90 , klula-q6crs0 , klula-q6crv8 , klula-q6crz9 , klula-q6cst8 , klula-q6csv8 , klula-q6ctp8 , klula-q6cu02 , klula-q6cu78 , klula-q6cu79 , klula-q6cuv3 , klula-q6cvd3 , klula-q6cw70 , klula-q6cw92 , klula-q6cwu7 , klula-q6cx84 , klula-q6cxa3 , klula-q6cy41 , yarli-apth1 , yarli-atg15 , yarli-BST1B , yarli-lip2 , yarli-LIP3 , yarli-LIP4 , yarli-LIP5 , yarli-LIP7 , yarli-LIP8 , yarli-lipa1 , yarli-ppme1 , yarli-q6bzp1 , yarli-q6bzv7 , yarli-q6c1f5 , yarli-q6c1f7 , yarli-q6c1r3 , yarli-q6c2z2 , yarli-q6c3h1 , yarli-q6c3i6 , yarli-q6c3l1 , yarli-q6c3u6 , yarli-q6c4h8 , yarli-q6c5j1 , yarli-q6c5m4 , yarli-q6c6m4 , yarli-q6c6p7 , yarli-q6c6v2 , yarli-q6c7h3 , yarli-q6c7i7 , yarli-q6c7j5 , yarli-q6c7y6 , yarli-q6c8m4 , yarli-q6c8q4 , yarli-q6c8u4 , yarli-q6c8y2 , yarli-q6c9r0 , yarli-q6c9r1 , yarli-q6c9u0 , yarli-q6c9v4 , yarli-q6c209 , yarli-q6c225 , yarli-q6c493 , yarli-q6c598 , yarli-q6c687 , yarli-q6c822 , yarli-q6cau6 , yarli-q6cax2 , yarli-q6caz1 , yarli-q6cb63 , yarli-q6cba7 , yarli-q6cbb1 , yarli-q6cbe6 , yarli-q6cby1 , yarli-q6ccr0 , yarli-q6cdg1 , yarli-q6cdi6 , yarli-q6cdv9 , yarli-q6ce37 , yarli-q6ceg0 , yarli-q6cep3 , yarli-q6cey5 , yarli-q6cf60 , yarli-q6cfp3 , yarli-q6cfx2 , yarli-q6cg13 , yarli-q6cg27 , yarli-q6cgj3 , yarli-q6chb8 , yarli-q6ci59 , yarli-q6c748 , canga-q6fpj0 , klula-q6cp11 , yarli-q6c4p0 , debha-q6btp5 , debha-kex1

Title : Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype - Jaillon_2004_Nature_431_946
Author(s) : Jaillon O , Aury JM , Brunet F , Petit JL , Stange-Thomann N , Mauceli E , Bouneau L , Fischer C , Ozouf-Costaz C , Bernot A , Nicaud S , Jaffe D , Fisher S , Lutfalla G , Dossat C , Segurens B , Dasilva C , Salanoubat M , Levy M , Boudet N , Castellano S , Anthouard V , Jubin C , Castelli V , Katinka M , Vacherie B , Biemont C , Skalli Z , Cattolico L , Poulain J , de Berardinis V , Cruaud C , Duprat S , Brottier P , Coutanceau JP , Gouzy J , Parra G , Lardier G , Chapple C , McKernan KJ , McEwan P , Bosak S , Kellis M , Volff JN , Guigo R , Zody MC , Mesirov J , Lindblad-Toh K , Birren B , Nusbaum C , Kahn D , Robinson-Rechavi M , Laudet V , Schachter V , Quetier F , Saurin W , Scarpelli C , Wincker P , Lander ES , Weissenbach J , Roest Crollius H
Ref : Nature , 431 :946 , 2004
Abstract : Tetraodon nigroviridis is a freshwater puffer fish with the smallest known vertebrate genome. Here, we report a draft genome sequence with long-range linkage and substantial anchoring to the 21 Tetraodon chromosomes. Genome analysis provides a greatly improved fish gene catalogue, including identifying key genes previously thought to be absent in fish. Comparison with other vertebrates and a urochordate indicates that fish proteins have diverged markedly faster than their mammalian homologues. Comparison with the human genome suggests approximately 900 previously unannotated human genes. Analysis of the Tetraodon and human genomes shows that whole-genome duplication occurred in the teleost fish lineage, subsequent to its divergence from mammals. The analysis also makes it possible to infer the basic structure of the ancestral bony vertebrate genome, which was composed of 12 chromosomes, and to reconstruct much of the evolutionary history of ancient and recent chromosome rearrangements leading to the modern human karyotype.
ESTHER : Jaillon_2004_Nature_431_946
PubMedSearch : Jaillon_2004_Nature_431_946
PubMedID: 15496914
Gene_locus related to this paper: tetng-3neur , tetng-4neur , tetng-ACHE , tetng-BCHE , tetng-h3cfz4 , tetng-h3ci57 , tetng-h3cl30 , tetng-h3cnh2 , tetng-nlgn2b , tetng-h3czr1 , tetng-h3dbr5 , tetng-nlgn2a , tetng-nlgn3b , tetng-q4ref8 , tetng-q4rjp3 , tetng-q4rjy3 , tetng-q4rk53 , tetng-q4rk63 , tetng-q4rk66 , tetng-q4rkk3 , tetng-q4rli3 , tetng-q4rn09 , tetng-q4rqj4 , tetng-q4rqz6 , tetng-q4rr22 , tetng-q4rru9 , tetng-q4rtq6 , tetng-q4rvf8 , tetng-q4rwa0 , tetng-q4rx90 , tetng-q4ryv8 , tetng-q4ryz3 , tetng-q4s0h8 , tetng-q4s5x0 , tetng-q4s6r1 , tetng-q4s6t6 , tetng-q4s7e3 , tetng-q4s7x6 , tetng-q4s8t5 , tetng-q4s9w9 , tetng-q4s050 , tetng-q4s091 , tetng-q4s144 , tetng-q4s309 , tetng-q4s578 , tetng-q4sal4 , tetng-q4sbm6 , tetng-q4sbp0 , tetng-q4sbu0 , tetng-q4sd49 , tetng-q4ser6 , tetng-q4sfm7 , tetng-q4sgm5 , tetng-q4sgv2 , tetng-q4sh74 , tetng-q4shl7 , tetng-q4si60 , tetng-q4sie5 , tetng-q4sku6 , tetng-q4smu0 , tetng-q4smy3 , tetng-q4snp0 , tetng-q4snq3 , tetng-q4spa7 , tetng-q4spq0 , tetng-q4sqr3 , tetng-q4sty0 , tetng-q4suu2 , tetng-q4suz1 , tetng-q4sxh3 , tetng-q4syn6 , tetng-q4szk0 , tetng-q4szy0 , tetng-q4t3m9 , tetng-q4t4a1 , tetng-q4t6m1 , tetng-q4t7r6 , tetng-q4t173 , tetng-q4t826 , tetng-q4t920 , tetng-q4ta33 , tetng-q4tab8 , tetng-q4tb62 , tetng-q4tbe2 , tetng-h3dbw2 , tetng-h3cpc8 , tetng-h3cjy0 , tetng-h3d966 , tetng-h3d3e3 , tetng-h3d961 , tetng-h3ctg6 , tetng-h3dde8 , tetng-h3dde9 , tetng-h3det9 , tetng-h3cre8 , tetng-h3dfb4 , tetng-h3clj8

Title : The genome sequence of the malaria mosquito Anopheles gambiae - Holt_2002_Science_298_129
Author(s) : Holt RA , Subramanian GM , Halpern A , Sutton GG , Charlab R , Nusskern DR , Wincker P , Clark AG , Ribeiro JM , Wides R , Salzberg SL , Loftus B , Yandell M , Majoros WH , Rusch DB , Lai Z , Kraft CL , Abril JF , Anthouard V , Arensburger P , Atkinson PW , Baden H , de Berardinis V , Baldwin D , Benes V , Biedler J , Blass C , Bolanos R , Boscus D , Barnstead M , Cai S , Center A , Chaturverdi K , Christophides GK , Chrystal MA , Clamp M , Cravchik A , Curwen V , Dana A , Delcher A , Dew I , Evans CA , Flanigan M , Grundschober-Freimoser A , Friedli L , Gu Z , Guan P , Guigo R , Hillenmeyer ME , Hladun SL , Hogan JR , Hong YS , Hoover J , Jaillon O , Ke Z , Kodira C , Kokoza E , Koutsos A , Letunic I , Levitsky A , Liang Y , Lin JJ , Lobo NF , Lopez JR , Malek JA , McIntosh TC , Meister S , Miller J , Mobarry C , Mongin E , Murphy SD , O'Brochta DA , Pfannkoch C , Qi R , Regier MA , Remington K , Shao H , Sharakhova MV , Sitter CD , Shetty J , Smith TJ , Strong R , Sun J , Thomasova D , Ton LQ , Topalis P , Tu Z , Unger MF , Walenz B , Wang A , Wang J , Wang M , Wang X , Woodford KJ , Wortman JR , Wu M , Yao A , Zdobnov EM , Zhang H , Zhao Q , Zhao S , Zhu SC , Zhimulev I , Coluzzi M , della Torre A , Roth CW , Louis C , Kalush F , Mural RJ , Myers EW , Adams MD , Smith HO , Broder S , Gardner MJ , Fraser CM , Birney E , Bork P , Brey PT , Venter JC , Weissenbach J , Kafatos FC , Collins FH , Hoffman SL
Ref : Science , 298 :129 , 2002
Abstract : Anopheles gambiae is the principal vector of malaria, a disease that afflicts more than 500 million people and causes more than 1 million deaths each year. Tenfold shotgun sequence coverage was obtained from the PEST strain of A. gambiae and assembled into scaffolds that span 278 million base pairs. A total of 91% of the genome was organized in 303 scaffolds; the largest scaffold was 23.1 million base pairs. There was substantial genetic variation within this strain, and the apparent existence of two haplotypes of approximately equal frequency ("dual haplotypes") in a substantial fraction of the genome likely reflects the outbred nature of the PEST strain. The sequence produced a conservative inference of more than 400,000 single-nucleotide polymorphisms that showed a markedly bimodal density distribution. Analysis of the genome sequence revealed strong evidence for about 14,000 protein-encoding transcripts. Prominent expansions in specific families of proteins likely involved in cell adhesion and immunity were noted. An expressed sequence tag analysis of genes regulated by blood feeding provided insights into the physiological adaptations of a hematophagous insect.
ESTHER : Holt_2002_Science_298_129
PubMedSearch : Holt_2002_Science_298_129
PubMedID: 12364791
Gene_locus related to this paper: anoga-a0nb77 , anoga-a0nbp6 , anoga-a0neb7 , anoga-a0nei9 , anoga-a0nej0 , anoga-a0ngj1 , anoga-a7ut12 , anoga-a7uuz9 , anoga-ACHE1 , anoga-ACHE2 , anoga-agCG44620 , anoga-agCG44666 , anoga-agCG45273 , anoga-agCG45279 , anoga-agCG45511 , anoga-agCG46741 , anoga-agCG47651 , anoga-agCG47655 , anoga-agCG47661 , anoga-agCG47690 , anoga-agCG48797 , anoga-AGCG49362 , anoga-agCG49462 , anoga-agCG49870 , anoga-agCG49872 , anoga-agCG49876 , anoga-agCG50851 , anoga-agCG51879 , anoga-agCG52383 , anoga-agCG54954 , anoga-AGCG55021 , anoga-agCG55401 , anoga-agCG55408 , anoga-agCG56978 , anoga-ebiG239 , anoga-ebiG2660 , anoga-ebiG5718 , anoga-ebiG5974 , anoga-ebiG8504 , anoga-ebiG8742 , anoga-glita , anoga-nrtac , anoga-q5tpv0 , anoga-Q5TVS6 , anoga-q7pm39 , anoga-q7ppw9 , anoga-q7pq17 , anoga-Q7PQT0 , anoga-q7q8m4 , anoga-q7q626 , anoga-q7qa14 , anoga-q7qa52 , anoga-q7qal7 , anoga-q7qbj0 , anoga-f5hl20 , anoga-q7qkh2 , anoga-a0a1s4h1y7 , anoga-q7q887