Mougous JD

References (2)

Title : Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors - Russell_2013_Nature_496_508
Author(s) : Russell AB , LeRoux M , Hathazi K , Agnello DM , Ishikawa T , Wiggins PA , Wai SN , Mougous JD
Ref : Nature , 496 :508 , 2013
Abstract : Membranes allow the compartmentalization of biochemical processes and are therefore fundamental to life. The conservation of the cellular membrane, combined with its accessibility to secreted proteins, has made it a common target of factors mediating antagonistic interactions between diverse organisms. Here we report the discovery of a diverse superfamily of bacterial phospholipase enzymes. Within this superfamily, we defined enzymes with phospholipase A1 and A2 activity, which are common in host-cell-targeting bacterial toxins and the venoms of certain insects and reptiles. However, we find that the fundamental role of the superfamily is to mediate antagonistic bacterial interactions as effectors of the type VI secretion system (T6SS) translocation apparatus; accordingly, we name these proteins type VI lipase effectors. Our analyses indicate that PldA of Pseudomonas aeruginosa, a eukaryotic-like phospholipase D, is a member of the type VI lipase effector superfamily and the founding substrate of the haemolysin co-regulated protein secretion island II T6SS (H2-T6SS). Although previous studies have specifically implicated PldA and the H2-T6SS in pathogenesis, we uncovered a specific role for the effector and its secretory machinery in intra- and interspecies bacterial interactions. Furthermore, we find that this effector achieves its antibacterial activity by degrading phosphatidylethanolamine, the major component of bacterial membranes. The surprising finding that virulence-associated phospholipases can serve as specific antibacterial effectors suggests that interbacterial interactions are a relevant factor driving the continuing evolution of pathogenesis.
ESTHER : Russell_2013_Nature_496_508
PubMedSearch : Russell_2013_Nature_496_508
PubMedID: 23552891
Gene_locus related to this paper: ecoli-T6SS.TLE3

Title : The complete genome of Teredinibacter turnerae T7901: an intracellular endosymbiont of marine wood-boring bivalves (shipworms) - Yang_2009_PLoS.One_4_e6085
Author(s) : Yang JC , Madupu R , Durkin AS , Ekborg NA , Pedamallu CS , Hostetler JB , Radune D , Toms BS , Henrissat B , Coutinho PM , Schwarz S , Field L , Trindade-Silva AE , Soares CA , Elshahawi S , Hanora A , Schmidt EW , Haygood MG , Posfai J , Benner J , Madinger C , Nove J , Anton B , Chaudhary K , Foster J , Holman A , Kumar S , Lessard PA , Luyten YA , Slatko B , Wood N , Wu B , Teplitski M , Mougous JD , Ward N , Eisen JA , Badger JH , Distel DL
Ref : PLoS ONE , 4 :e6085 , 2009
Abstract : Here we report the complete genome sequence of Teredinibacter turnerae T7901. T. turnerae is a marine gamma proteobacterium that occurs as an intracellular endosymbiont in the gills of wood-boring marine bivalves of the family Teredinidae (shipworms). This species is the sole cultivated member of an endosymbiotic consortium thought to provide the host with enzymes, including cellulases and nitrogenase, critical for digestion of wood and supplementation of the host's nitrogen-deficient diet. T. turnerae is closely related to the free-living marine polysaccharide degrading bacterium Saccharophagus degradans str. 2-40 and to as yet uncultivated endosymbionts with which it coexists in shipworm cells. Like S. degradans, the T. turnerae genome encodes a large number of enzymes predicted to be involved in complex polysaccharide degradation (>100). However, unlike S. degradans, which degrades a broad spectrum (>10 classes) of complex plant, fungal and algal polysaccharides, T. turnerae primarily encodes enzymes associated with deconstruction of terrestrial woody plant material. Also unlike S. degradans and many other eubacteria, T. turnerae dedicates a large proportion of its genome to genes predicted to function in secondary metabolism. Despite its intracellular niche, the T. turnerae genome lacks many features associated with obligate intracellular existence (e.g. reduced genome size, reduced %G+C, loss of genes of core metabolism) and displays evidence of adaptations common to free-living bacteria (e.g. defense against bacteriophage infection). These results suggest that T. turnerae is likely a facultative intracellular ensosymbiont whose niche presently includes, or recently included, free-living existence. As such, the T. turnerae genome provides insights into the range of genomic adaptations associated with intracellular endosymbiosis as well as enzymatic mechanisms relevant to the recycling of plant materials in marine environments and the production of cellulose-derived biofuels.
ESTHER : Yang_2009_PLoS.One_4_e6085
PubMedSearch : Yang_2009_PLoS.One_4_e6085
PubMedID: 19568419
Gene_locus related to this paper: tertt-c5bif5 , tertt-c5bkb0 , tertt-c5bkv2 , tertt-c5bmq4 , tertt-c5bmw5 , tertt-c5bmx1 , tertt-c5bmz8 , tertt-c5bn23 , tertt-c5bn62 , tertt-c5bpb2 , tertt-c5bpu2 , tertt-c5bru8 , tertt-c5btp6 , tertt-c5buc2 , tertt-metx , tertt-c5br42 , tertt-c5bpt0 , tertt-c5btk3