(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) > cellular organisms: NE > Bacteria: NE > Proteobacteria: NE > Betaproteobacteria: NE > Burkholderiales: NE > Burkholderiaceae: NE > Cupriavidus: NE > Cupriavidus necator: NE
Warning: This entry is a compilation of different species or line or strain with more than 90% amino acide identity. You can retrieve all strain data
(Below N is a link to NCBI taxonomic web page and E link to ESTHER at designed phylum.) Ralstonia eutropha: N, E.
Cupriavidus necator: N, E.
Ralstonia eutropha H16: N, E.
Cupriavidus necator N-1: N, E.
LegendThis sequence has been compared to family alignement (MSA) red => minority aminoacid blue => majority aminoacid color intensity => conservation rate title => sequence position(MSA position)aminoacid rate Catalytic site Catalytic site in the MSA MSASPRLGFVQCISPAGLHRMAYHEWGDPANPRVLVCAHGLTRTGRDFDT VASALCGDYRVVCPDVAGRGRSEWLADANGYVVPQYVSDMVTLIARLNVE KVDWFGTSMGGLIGMGLAGLPKSPVRNVLLNDVGPKLAPSAVERIGAYLG LPVRFKTFEEGLAYLQTISASFGRHTPEQWRELNAAILKPVQGTDGLEWG LHYDPQLAVPFRKSTPEAIAAGEAALWRTFEAIEGPVLVVRGAQSDLLLR ETVAEMVARGKHVSSVEVPDVGHAPTFVDPAQIAIAPQFFTGA
The H(2)-oxidizing lithoautotrophic bacterium Ralstonia eutropha H16 is a metabolically versatile organism capable of subsisting, in the absence of organic growth substrates, on H(2) and CO(2) as its sole sources of energy and carbon. R. eutropha H16 first attracted biotechnological interest nearly 50 years ago with the realization that the organism's ability to produce and store large amounts of poly[R-(-)-3-hydroxybutyrate] and other polyesters could be harnessed to make biodegradable plastics. Here we report the complete genome sequence of the two chromosomes of R. eutropha H16. Together, chromosome 1 (4,052,032 base pairs (bp)) and chromosome 2 (2,912,490 bp) encode 6,116 putative genes. Analysis of the genome sequence offers the genetic basis for exploiting the biotechnological potential of this organism and provides insights into its remarkable metabolic versatility.
        
Title: Novel intracellular 3-hydroxybutyrate-oligomer hydrolase in Wautersia eutropha H16 Kobayashi T, Uchino K, Abe T, Yamazaki Y, Saito T Ref: Journal of Bacteriology, 187:5129, 2005 : PubMed
Wautersia eutropha H16 (formerly Ralstonia eutropha) mobilizes intracellularly accumulated poly(3-hydroxybutyrate) (PHB) with intracellular poly(3-hydroxybutyrate) depolymerases. In this study, a novel intracellular 3-hydroxybutyrate-oligomer hydrolase (PhaZc) gene was cloned and overexpressed in Escherichia coli. Then PhaZc was purified and characterized. Immunoblot analysis with polyclonal antiserum against PhaZc revealed that most PhaZc is present in the cytosolic fraction and a small amount is present in the poly(3-hydroxybutyrate) inclusion bodies of W. eutropha. PhaZc degraded various 3-hydroxybutyrate oligomers at a high specific activity and artificial amorphous poly(3-hydroxybutyrate) at a lower specific activity. Native PHB granules and semicrystalline PHB were not degraded by PhaZc. A PhaZ deletion mutation enhanced the deposition of PHB in the logarithmic phase in nutrient-rich medium. PhaZc differs from the hydrolases of W. eutropha previously reported and is a novel type of intracellular 3-hydroxybutyrate-oligomer hydrolase, and it participates in the mobilization of PHB along with other hydrolases.