BIMP has the same phosphonate group as sarin and similar anti-acetylcholinesterase (AChE) activity to that of sarin (IC50 = 3.9 nM in bovine erythrocyte AChE
Although organophosphorus agents are used worldwide as pesticides, there have been many reports of pesticide poisoning. Nerve agents are organophosphorus agents that interfere with neurotransmission and have been used as chemical weapons in wars. These agents mainly irreversibly inhibit the action of acetylcholinesterase, an enzyme that breaks down acetylcholine, a neurotransmitter, and are believed to cause acute symptoms of poisoning. However, in recent years, the presence of subacute, delayed toxicity independent of acetylcholinesterase inhibition has been reported for some organophosphorus agents. We analyzed the subacute and delayed toxicity of bis(isopropylmethyl)phosphonate (BIMP), which has the same phosphonate group as sarin. BIMP rounded out the morphology of the cells and reduced the proportion of cells in the G1 phase of the cell cycle over time. No DNA damage was observed, suggesting that BIMP may affect cell division.
We report that there is a time-related change in the phospholipase C (PLC) activities of rat brain cytosol and membrane fractions after iv injection of a soman-like or a sarin-like organophosphorous agent (bis(isopropyl methyl)phosphonate [BIMP] and bis(pinacolyl methyl)phosphonate [BPMP]). PLCgamma was activated in the brain cytosol fraction from BPMP-injected rats. The phosphorylating activity of rat brain membrane fractions were enhanced by BPMP treatment. The brain membrane fractions from BPMP-treated rats phosphorylated several proteins, including supposedly PLCgamma in the brain cytosol fraction from control rats in vitro. These results suggest that soman and sarin may stimulate a membrane tyrosine kinase, including growth factor receptors, directly or indirectly.
A sarin-like organophosphorus agent, [bis(isopropyl methyl)phosphonate; BIMP], was synthesized. This agent has the same phosphonate group as sarin and also has the same anti-acetylcholinesterase activity potency as sarin. The ID50 and LD50 values of BIMP in mice after intravenous injection were 3.9 nM and 0.8 mg/kg, respectively. The AChE activities of their red blood cells and brains were dose-dependently reduced by intravenous BIMP. After preparation of experimental BIMP-exposed human red blood cells, BIMP-bound acetylcholinesterase (AChE) was solubilized from erythrocyte membranes, purified by immunoaffinity chromatography, digested with trypsin, and the sarin hydrolysis products bound to AChE were released by alkaline phosphatase digestion. The digested sarin hydrolysis products were subjected to trimethylsilyl (TMS) derivatization and detected by gas chromatography-mass spectrometry. Isopropyl methylphosphonic- and methylphosphonic acids, which are the sarin hydrolysis products, were detected in experimental BIMP-exposed human red blood cells. This new method, which enables sarin's hydrolysis products to be detected in BIMP-exposed erythrocytes, is a useful tool for studying sarin-poisoning victims.
Although organophosphorus agents are used worldwide as pesticides, there have been many reports of pesticide poisoning. Nerve agents are organophosphorus agents that interfere with neurotransmission and have been used as chemical weapons in wars. These agents mainly irreversibly inhibit the action of acetylcholinesterase, an enzyme that breaks down acetylcholine, a neurotransmitter, and are believed to cause acute symptoms of poisoning. However, in recent years, the presence of subacute, delayed toxicity independent of acetylcholinesterase inhibition has been reported for some organophosphorus agents. We analyzed the subacute and delayed toxicity of bis(isopropylmethyl)phosphonate (BIMP), which has the same phosphonate group as sarin. BIMP rounded out the morphology of the cells and reduced the proportion of cells in the G1 phase of the cell cycle over time. No DNA damage was observed, suggesting that BIMP may affect cell division.
Organophosphorus (OP) compounds such as sarin are toxic agents that irreversibly inhibit the enzyme acetylcholinesterase. A recent study showed that OP compounds also have multiple toxicity mechanisms, and another suggested that endoplasmic reticulum (ER) dysfunction contributes to OP toxicity. However, the signaling pathway and mechanisms involved are poorly understood. We examined whether the sarin-like OP agent bis(isopropyl methyl)phosphonate (BIMP), which exhibits toxicity similar to that of sarin, induced ER stress in human astrocytoma CCF-STTG1 cells. Our results demonstrate that BIMP exposure reduced cell viability. Moreover, it induced changes in mitochondrial membrane potential and increased cleavage of caspase 3. Treatment with BIMP increased the mRNA levels of the ER stress marker genes binding immunoglobulin protein (BiP) and the transcription factor C/EBP homologous protein (CHOP). Furthermore, BIMP increased the protein expressions and phosphorylation of BiP, CHOP, and protein kinase RNA-like ER kinase and the phosphorylation of eukaryotic translation initiation factor 2. Compared to BIMP treatment alone, pretreatment with the CHOP siRNA, siCHOP, decreased BIMP-dependent CHOP expression and improved CCF-STTG1 cell viability. Our findings suggest that BIMP induced mitochondrial dysfunction and apoptotic cell death event mediated by ER stress in CCF-STTG1 cells and that treatment targeted at managing ER stress has the potential to attenuate the toxicity of OP nerve agents.
The organophosphorus compound sarin irreversibly inhibits acetylcholinesterase. We examined the acute cardiovascular effects of a sarin-like organophosphorus agent, bis(isopropyl methyl)phosphonate (BIMP), in anaesthetized, artificially ventilated rats. Intravenous administration of BIMP (0.8mg/kg; the LD50 value) induced a long-lasting increase in blood pressure and tended to increase heart rate. In rats pretreated with the non-selective muscarinic-receptor antagonist atropine, BIMP significantly increased both heart rate and blood pressure. In atropine-treated rats, hexamethonium (antagonist of ganglionic nicotinic receptors) greatly attenuated the BIMP-induced increase in blood pressure without changing the BIMP-induced increase in heart rate. In rats treated with atropine plus hexamethonium, intravenous phentolamine (non-selective alpha-adrenergic receptor antagonist) plus propranolol (non-selective beta-adrenergic receptor antagonist) completely blocked the BIMP-induced increases in blood pressure and heart rate. In atropine-treated rats, the reversible acetylcholinesterase inhibitor neostigmine (1mg/kg) induced a transient increase in blood pressure, but had no effect on heart rate. These results suggest that in anaesthetized rats, BIMP induces powerful stimulation of sympathetic as well as parasympathetic nerves and thereby modulates heart rate and blood pressure. They may also indicate that an action independent of acetylcholinesterase inhibition contributes to the acute cardiovascular responses induced by BIMP.
We report that there is a time-related change in the phospholipase C (PLC) activities of rat brain cytosol and membrane fractions after iv injection of a soman-like or a sarin-like organophosphorous agent (bis(isopropyl methyl)phosphonate [BIMP] and bis(pinacolyl methyl)phosphonate [BPMP]). PLCgamma was activated in the brain cytosol fraction from BPMP-injected rats. The phosphorylating activity of rat brain membrane fractions were enhanced by BPMP treatment. The brain membrane fractions from BPMP-treated rats phosphorylated several proteins, including supposedly PLCgamma in the brain cytosol fraction from control rats in vitro. These results suggest that soman and sarin may stimulate a membrane tyrosine kinase, including growth factor receptors, directly or indirectly.
A sarin-like organophosphorus agent, [bis(isopropyl methyl)phosphonate; BIMP], was synthesized. This agent has the same phosphonate group as sarin and also has the same anti-acetylcholinesterase activity potency as sarin. The ID50 and LD50 values of BIMP in mice after intravenous injection were 3.9 nM and 0.8 mg/kg, respectively. The AChE activities of their red blood cells and brains were dose-dependently reduced by intravenous BIMP. After preparation of experimental BIMP-exposed human red blood cells, BIMP-bound acetylcholinesterase (AChE) was solubilized from erythrocyte membranes, purified by immunoaffinity chromatography, digested with trypsin, and the sarin hydrolysis products bound to AChE were released by alkaline phosphatase digestion. The digested sarin hydrolysis products were subjected to trimethylsilyl (TMS) derivatization and detected by gas chromatography-mass spectrometry. Isopropyl methylphosphonic- and methylphosphonic acids, which are the sarin hydrolysis products, were detected in experimental BIMP-exposed human red blood cells. This new method, which enables sarin's hydrolysis products to be detected in BIMP-exposed erythrocytes, is a useful tool for studying sarin-poisoning victims.