D form isolated from Chondodendron tomentosum (Menispermaceae) the d-form and dimethylether acts as skeletal muscle relaxant Nicotinic. Active ingredient in CURARE. Ligand of small conductance Ca2+-activated K+ (SKca) channels
8 moreTitle: Cloning and expression of acetylcholinesterase from Bungarus fasciatus venom. A new type of cooh-terminal domain; involvement of a positively charged residue in the peripheral site Cousin X, Bon S, Duval N, Massoulie J, Bon C Ref: Journal of Biological Chemistry, 271:15099, 1996 : PubMed
As deduced from cDNA clones, the catalytic domain of Bungarus fasciatus venom acetylcholinesterase (AChE) is highly homologous to those of other AChEs. It is, however, associated with a short hydrophilic carboxyl-terminal region, containing no cysteine, that bears no resemblance to the alternative COOH-terminal peptides of the GPI-anchored molecules (H) or of other homomeric or heteromeric tailed molecules (T). Expression of complete and truncated AChE in COS cells showed that active hydrophilic monomers are produced and secreted in all cases, and that cleavage of a very basic 8-residue carboxyl-terminal fragment occurs upon secretion. The COS cells produced Bungarus AChE about 30 times more efficiently than an equivalent secreted monomeric rat AChE. The recombinant Bungarus AChE, like the natural venom enzyme, showed a distinctive ladder pattern in nondenaturing electrophoresis, probably reflecting a variation in the number of sialic acids. By mutagenesis, we showed that two differences (methionine instead of tyrosine at position 70; lysine instead of aspartate or glutamate at position 285) explain the low sensitivity of Bungarus AChE to peripheral site inhibitors, compared to the Torpedo or mammalian AChEs. These results illustrate the importance of both the aromatic and the charged residues, and the fact that peripheral site ligands (propidium, gallamine, D-tubocurarine, and fasciculin 2) interact with diverse subsets of residues.
        
Title: Kinetic analysis of neuromuscular blockade. I. Relationship between twitch depression and stimulation frequency after d-tubocurarine administration Tajima T, Kaneko K, Hatanaka T, Aiba T, Katayama K, Koizumi T Ref: Biol Pharm Bull, 17:1083, 1994 : PubMed
The degree of twitch depression induced by nondepolarizing neuromuscular blocking drugs is known to be dependent on the stimulation frequency employed. Train-of-four (TOF) stimulations with different frequencies (0.67, 1.33 and 2.0 Hz) were delivered to a sciatic nerve of a rat and series of four twitch heights of a tibialis anterior muscle were measured after d-tubocurarine (d-TC) administration. With a decrease of stimulus interval, twitch heights were intensely depressed. We hypothesized that the oservations are due to the changes of released amount of neuromuscular transmitter, acetylcholine, dependent on stimulus interval, and a pharmacokinetic/pharmacodynamic model based on the hypothesis was proposed. The model allowed simultaneous fitting of the twitch height depression after d-TC administration. It also could give a rationale to the fact that TOF stimulation at 2.0 Hz is a more sensitive monitoring method of neuromuscular function than single twitch stimulation (0.1-0.2 Hz).
        
Title: Structure-activity relationship of reversible cholinesterase inhibitors including paraquat Seto Y, Shinohara T Ref: Archives of Toxicology, 62:37, 1988 : PubMed
The inhibitory effect of paraquat on cholinesterase activity was investigated in comparison with four paraquat derivatives, six monoquaternary ammoniums and six anticholinergic drugs. Inhibitor concentrations to cause 50% inhibition (I50) and Hill coefficients for three enzymes, human erythrocyte acetylcholinesterase (AChE), Electrophorus electricus AChE and human plasma butyrylcholinesterase (BCHE) were measured. The results obtained were as follows. The I50 for erythrocyte AChE was similar to the I50 for eel AChE. Secondary to edrophonium, diethylparaquat, paraquat, morfamquat and monoquat showed lower I50 for AChE, and possessed higher inhibition selectivity (IS), expressed as the ratio of I50 for BCHE to I50 for erythrocyte AChE. However, diquat showed higher I50 for AChE and lower IS, similar to the other monoquaternary ammoniums. A negative correlation was observed between log [I50 for erythrocyte AChE] and log [IS], among paraquat and its derivatives, monoquaternary ammoniums and anticholinergic drugs, respectively. With respect to Hill coefficients, these inhibitors could be classified into four groups, [1] competitive inhibitors: diquat, edrophonium, choline, tetramethylammonium and trimethylphenylammonium, [2] inhibitors showing negative cooperativity: paraquat, diethylparaquat, morfamquat, d-tubocurarine, atropine, gallamine and nicotine, [3] moderate type inhibitors: monoquat, hexamethonium and decamethonium. [4] the other type inhibitors showing positive cooperativity for erythrocyte AChE: tetraethylammonium and ethyltrimethylammonium.
        
8 lessTitle: The influence of peripheral site ligands on the reaction of symmetric and chiral organophosphates with wildtype and mutant acetylcholinesterases Radic Z, Taylor P Ref: Chemico-Biological Interactions, 119-120:111, 1999 : PubMed
The rates of inhibition of mouse acetylcholinesterase (AChE) (EC 3.1.1.7) by paraoxon, haloxon, DDVP, and enantiomers of neutral alkyl methylphosphonyl thioates and cationic alkyl methylphosphonyl thiocholines were measured in the presence and absence of AChE peripheral site inhibitors: gallamine, D-tubocurarine, propidium, atropine and derivatives of coumarin. All ligands, except the coumarins, at submillimolar concentrations enhanced the rates of inhibition by neutral organophosphorus compounds (OPs) while inhibition rates by cationic OPs were slowed down. When peripheral site ligand concentrations extended to millimolar, the extent of the enhancement decreased creating a bell shaped activation profile. Analysis of inhibition by DDVP and haloxon revealed that peripheral site inhibitors increased the second order reaction rates by increasing maximal rates of phosphylation.
        
Title: Cloning and expression of acetylcholinesterase from Bungarus fasciatus venom. A new type of cooh-terminal domain; involvement of a positively charged residue in the peripheral site Cousin X, Bon S, Duval N, Massoulie J, Bon C Ref: Journal of Biological Chemistry, 271:15099, 1996 : PubMed
As deduced from cDNA clones, the catalytic domain of Bungarus fasciatus venom acetylcholinesterase (AChE) is highly homologous to those of other AChEs. It is, however, associated with a short hydrophilic carboxyl-terminal region, containing no cysteine, that bears no resemblance to the alternative COOH-terminal peptides of the GPI-anchored molecules (H) or of other homomeric or heteromeric tailed molecules (T). Expression of complete and truncated AChE in COS cells showed that active hydrophilic monomers are produced and secreted in all cases, and that cleavage of a very basic 8-residue carboxyl-terminal fragment occurs upon secretion. The COS cells produced Bungarus AChE about 30 times more efficiently than an equivalent secreted monomeric rat AChE. The recombinant Bungarus AChE, like the natural venom enzyme, showed a distinctive ladder pattern in nondenaturing electrophoresis, probably reflecting a variation in the number of sialic acids. By mutagenesis, we showed that two differences (methionine instead of tyrosine at position 70; lysine instead of aspartate or glutamate at position 285) explain the low sensitivity of Bungarus AChE to peripheral site inhibitors, compared to the Torpedo or mammalian AChEs. These results illustrate the importance of both the aromatic and the charged residues, and the fact that peripheral site ligands (propidium, gallamine, D-tubocurarine, and fasciculin 2) interact with diverse subsets of residues.
        
Title: Comparative use of muscle relaxants and their reversal in three European countries: a survey in France, Germany and Great Britain Osmer C, Vogele C, Zickmann B, Hempelmann G Ref: European Journal of Anaesthesiology, 13:389, 1996 : PubMed
A survey was conducted among British, French and German anaesthetists to evaluate possible national differences in the peri-operative use of muscle relaxants and their reversal agents. The same non-depolarizing relaxants are used in all three countries, with the exception of d-tubocurarine, which is only available in Great Britain, and alcuronium which is mainly used in Germany. The French anaesthetists seem to use significantly less succinylcholine than their peers in Great Britain or Germany for both elective and emergency intubation. Monitoring of neuromuscular blockade still relies mainly on "clinical judgement'. Reversal of non-depolarizing muscle relaxants is performed routinely in Great Britain, while a substantial number of French anaesthetists avoid the use of a reversal. Dose regimes for neostigmine vary largely, with German anaesthetists administering the lowest, and British anaesthetists administering the highest doses. Side effects of reversal agents are reported by colleagues from all three countries in too high a percentage to justify uncritical administration of these drugs. In Germany there seems to be a noteworthy lack of recovery facilities.
BACKGROUND Mivacurium, a nondepolarizing muscle relaxant, is metabolized by plasma cholinesterase. Although edrophonium does not alter plasma cholinesterase activity, we have observed that doses of edrophonium that antagonize paralysis from other nondepolarizing muscle relaxants are less effective with mivacurium. We speculated that edrophonium might after metabolism of mivacurium, thereby hindering antagonism of paralysis. Accordingly, we determined the effect of edrophonium on neuromuscular function and plasma mivacurium concentrations during constant mivacurium infusion.
METHODS:
We infused mivacurium to maintain 90% depression of adductor pollicis twitch tension and then gave edrophonium in doses ranging from 125-2,000 micrograms/kg without altering the mivacurium infusion. Peak twitch tension after edrophonium was determined to estimate the dose of edrophonium antagonizing 50% of twitch depression for antagonism of mivacurium; plasma cholinesterase activity and mivacurium concentrations before and after edrophonium were measured. Additional subjects were given 500 micrograms/kg edrophonium to antagonize continuous infusions of d-tubocurarine and vecuronium.
RESULTS:
With mivacurium, edrophonium increased twitch tension in a dose-dependent manner: the dose of edrophonium antagonizing 50% of twitch depression was 2,810 micrograms/kg. The largest dose of edrophonium (2,000 micrograms/kg) produced only 45 +/- 7% antagonism. Edrophonium, 500 micrograms/kg, antagonized mivacurium markedly less than it antagonized d-tubocurarine and vecuronium. Edrophonium increased plasma concentrations of the two potent stereoisomers of mivacurium 48% and 79%, these peaking at 1-2 min; plasma cholinesterase activity was unchanged.
CONCLUSIONS:
Edrophonium doses that antagonize d-tubocurarine and vecuronium are less effective in antagonizing the neuromuscular effects of mivacurium during constant infusion. Edrophonium increases plasma mivacurium concentrations, partly or completely explaining its limited efficacy; the mechanism by which edrophonium increases mivacurium concentrations remains unexplained. Our results demonstrate that antagonism of mivacurium by edrophonium is impaired, and therefore we question whether edrophonium should be used to antagonize mivacurium.
Comparison of the effect of three 'peripheral' site ligands, propidium, d-tubocurarine, and gallamine, on acetylcholinesterase (acetylcholine hydrolase; EC 3.1.1.7) of Torpedo and chicken shows that all three are substantially more effective inhibitors of the Torpedo enzyme than of the chicken enzyme. In contrast, edrophonium, which is directed to the "anionic" subsite of the active site, inhibits the chicken and Torpedo enzymes equally effectively. Two bisquaternary ligands, decamethonium and 1,5-bis(4-allydimethylammoniumphenyl)pentan-3-one dibromide, which are believed to bridge the anionic subsite of the active site and the "peripheral" anionic site, are much weaker inhibitors of the chicken enzyme than of Torpedo acetylcholinesterase, whereas the shorter bisquaternary ligand hexamethonium inhibits the two enzymes similarly. The concentration dependence of activity towards the natural substrate acetylcholine is almost identical for the two enzymes, whereas substrate inhibition of chicken acetylcholinesterase is somewhat weaker than that of the Torpedo enzyme. The experimental data can be rationalized on the basis of the three-dimensional structure of the Torpedo enzyme and alignment of the chicken and Torpedo sequences; it is suggested that the absence, in the chicken enzyme, of two aromatic residues, Tyr-70 and Trp-279, that contribute to the peripheral site of Torpedo acetylcholinesterase is responsible for the differential effects of peripheral site ligands on the two enzymes.
        
Title: Kinetic analysis of neuromuscular blockade. I. Relationship between twitch depression and stimulation frequency after d-tubocurarine administration Tajima T, Kaneko K, Hatanaka T, Aiba T, Katayama K, Koizumi T Ref: Biol Pharm Bull, 17:1083, 1994 : PubMed
The degree of twitch depression induced by nondepolarizing neuromuscular blocking drugs is known to be dependent on the stimulation frequency employed. Train-of-four (TOF) stimulations with different frequencies (0.67, 1.33 and 2.0 Hz) were delivered to a sciatic nerve of a rat and series of four twitch heights of a tibialis anterior muscle were measured after d-tubocurarine (d-TC) administration. With a decrease of stimulus interval, twitch heights were intensely depressed. We hypothesized that the oservations are due to the changes of released amount of neuromuscular transmitter, acetylcholine, dependent on stimulus interval, and a pharmacokinetic/pharmacodynamic model based on the hypothesis was proposed. The model allowed simultaneous fitting of the twitch height depression after d-TC administration. It also could give a rationale to the fact that TOF stimulation at 2.0 Hz is a more sensitive monitoring method of neuromuscular function than single twitch stimulation (0.1-0.2 Hz).
        
Title: Binding of 125I-fasciculin to rat brain acetylcholinesterase. The complex still binds diisopropyl fluorophosphate Marchot P, Khelif A, Ji YH, Mansuelle P, Bougis PE Ref: Journal of Biological Chemistry, 268:12458, 1993 : PubMed
Iodination of fasciculin 3 (FAS3) from Dendroaspis viridis venom provided us with a fully active specific probe of fasciculin binding sites on rat brain acetylcholinesterase (AChE). Binding and inhibition are concomitant, as association and inhibition rate constants k1 and ki are identical. The 125I-FAS3.AChE complex dissociates very slowly (t 1/2 = 48 h) and is characterized by a dissociation constant, Kd, of 0.4 pM. All the specific binding of 125I-FAS3 to AChE is prevented by FAS3 as from D. angusticeps venom (Kd = 0.4, 14, and 25 pM, respectively). It is also prevented by propidium iodide, BW284C51, and d-tubocurarine, which bind to peripheral anionic sites of AChE, by Ca2+ and Mg2+, known to enhance AChE activity through an allosteric phenomenon and by acetylthiocholine concentrations which lead to excess substrate inhibition of the enzyme. Diisopropyl fluorphosphate and paroxon, which inhibit AChE by phosphorylating the catalytic serine, have no effect on either the binding rate or the number of binding sites of 125I-FAS3. O-Ethyl-S2-diisopropylaminoethyl methylphosphonothionate, however, which binds irreversibly to the AChE catalytic site but reversibly to a peripheral site, induces a 130% increase in the binding rate of 125I-FAS3, without changing the total number of 125I-FAS3 binding sites. Our results demonstrate that fasciculins bind on a peripheral site of AChE, distinct from the catalytic site and, at least partly, common with the sites on which some cationic inhibitors and the substrate in excess bind. Since phosphorylation of the catalytic serine (esteratic subsite) by [1,3-3H]diisopropyl fluorophosphate can still occur on the FAS3.AChE complex, the structural modification induced by fasciculins may affect the anionic subsite of AChE catalytic site.
        
Title: Non-quantal release of acetylcholine affects polyneuronal innervation on developing rat muscle fibres Vyskocil F, Vrbova G Ref: European Journal of Neuroscience, 5:1677, 1993 : PubMed
The membrane potential at endplates of the rat hemidiaphragm for 9-day-old rats increases by 1.8 mV after addition of D-tubocurarine. The endplate depolarization before the addition of D-tubocurarine is considered to be due to non-quantal release (NQR) of acetylcholine (ACh). In the presence of an anticholinesterase this depolarization increased. It was further enhanced by 0.1-1.0 mM Mg2+ and reduced by 4 mM Mg2+ concentration. Thus the regulation of NQR at neuromuscular junctions of developing rat muscles is similar to that seen in adult mammalian species. The effect of NQR of Ach on neuromuscular contacts of muscle fibres from 8-9-day-old rat diaphragm and soleus muscles was studied. Pre-incubating the muscles in solutions where NQR was increased by lowering Mg2+ caused a significant (P < 0.01) reduction of neuromuscular contacts. This reduction did not occur when muscles were incubated in high Mg2+, when NQR is reduced. Increasing quantal release by high Ca2+ also caused a reduction of neuromuscular contacts. Histological examination of soleus muscle fibres treated with an anticholinesterase showed that muscles incubated in solutions with low (0.1 mM) concentrations of Mg2+ had significantly fewer neuromuscular contacts (38%) than those incubated in high concentrations of Mg2+ (61%). It is concluded that the NQR as assessed here contributes to the elimination of polyneuronal innervation during postnatal development of rat muscles.
        
Title: Structure-activity relationship of reversible cholinesterase inhibitors including paraquat Seto Y, Shinohara T Ref: Archives of Toxicology, 62:37, 1988 : PubMed
The inhibitory effect of paraquat on cholinesterase activity was investigated in comparison with four paraquat derivatives, six monoquaternary ammoniums and six anticholinergic drugs. Inhibitor concentrations to cause 50% inhibition (I50) and Hill coefficients for three enzymes, human erythrocyte acetylcholinesterase (AChE), Electrophorus electricus AChE and human plasma butyrylcholinesterase (BCHE) were measured. The results obtained were as follows. The I50 for erythrocyte AChE was similar to the I50 for eel AChE. Secondary to edrophonium, diethylparaquat, paraquat, morfamquat and monoquat showed lower I50 for AChE, and possessed higher inhibition selectivity (IS), expressed as the ratio of I50 for BCHE to I50 for erythrocyte AChE. However, diquat showed higher I50 for AChE and lower IS, similar to the other monoquaternary ammoniums. A negative correlation was observed between log [I50 for erythrocyte AChE] and log [IS], among paraquat and its derivatives, monoquaternary ammoniums and anticholinergic drugs, respectively. With respect to Hill coefficients, these inhibitors could be classified into four groups, [1] competitive inhibitors: diquat, edrophonium, choline, tetramethylammonium and trimethylphenylammonium, [2] inhibitors showing negative cooperativity: paraquat, diethylparaquat, morfamquat, d-tubocurarine, atropine, gallamine and nicotine, [3] moderate type inhibitors: monoquat, hexamethonium and decamethonium. [4] the other type inhibitors showing positive cooperativity for erythrocyte AChE: tetraethylammonium and ethyltrimethylammonium.
        
Title: Multiple binding of D-tubocurarine to acetylcholinesterase Zorko M, Pavlic MR Ref: Biochemical Pharmacology, 35:2287, 1986 : PubMed
The binding of D-tubocurarine (TC) to acetylcholinesterase (AChE) was studied using different methods of enzyme kinetics. The main results are as follows. TC reversibly inhibits the hydrolysis of different substrates of AChE with three different inhibition constants (Ki1 = 7.0 +/- 0.8 X 10(-5) M, Ki2 = 3.1 +/- 1.0 X 10(-4) M, and Ki3 = 4.2 +/- 0.5 X 10(-3) M). Reference inhibitors tetramethylammonium (TMA), tetraethylammonium (TEA), and decamethonium (C-10) inhibit the hydrolysis of different substrates with constants, which are the same for each individual inhibitor. These three inhibitors compete with TC in the inhibition of enzymatic hydrolysis of acetylthiocholine (ASCh); all three of them affect the noncompetitive component of the inhibition of the hydrolysis of ASCh by TC, which arises from the binding of TC to the peripheral anionic site of AChE, but TEA and C-10 affect also the competitive component of this inhibition, which arises from the binding of TC at the catalytic anionic site. TC partially inhibits the methanesulfonylation of AChE; dissociation constant for TC in this process is KA = 4.5 X 10(-4) M. All our results lead to the conclusion that TC binds to three regions on the active surface of AChE. The first region is at the peripheral anionic site; the other two regions are situated in the vicinity of the catalytic anionic site and the esteratic site.
        
Title: Interaction of fluorescence probes with acetylcholinesterase. The site and specificity of propidium binding Taylor P, Lappi S Ref: Biochemistry, 14:1989, 1975 : PubMed
A bis-quaternary fluorescence probe, propidium diiodide, has been found to exhibit a tenfold enhancement of fluorescence when bound to acetylcholinesterase from Torpedo california. The complex is characterized by a high affinity, KD = 3.0 times 10-7 M, and 1:1 stoichiometry with the 82,000 molecular weight subunit of acetylcholinesterase. A wide variety of other quaternary ammonium ligands such as decamethonium, gallamine, d-tubocurarine, tetraethylammonium, and tetramethylammonium will completely dissociate propidium from the enzyme as will monovalent and divalent inorganic cations. The competitive dissociation does not show cooperative behavior or a distinct, requirement for occupation of multiple sites of different affinity to produce displacement. While a directly competitive relationship can be illustrated macroscopically, the various quaternary ligands show a different susceptibility toward inorganic cation displacement. The affinity of propidium relative to gallamine increases with ionic strength. This finding indicates that there is not complete equivalence in the negative subsites to which quaternary groups bind. Although edrophoniumwill also displace propidium from the enzyme, the dissociation constant obtained from this competitive relationship is 3.5 orders of magnitude greater than the constants obtained for inhibition of catalysis. By competitive displacement titrations it is shown that the primary binding site of edrophonium is distinct from that of propidium and a ternary complex with the two ligands can form on each subunit. In contrast to edrophonium, the binding of propidium is unaffected by methanesulfonylation of the active center serine and is uncompetitive with the carbamylating substrate, N-methyl-7-dimethylcarbamoxyquinolinium. Thus, it appears that propidium associates with a peripheral anionic center on the enzyme. Although propidium and edrophonium associate at separate sites on acetylcholinesterase, bis-quaternary ligands where the quaternary nitrogens are separated by 14 A displace both ligands from the enzyme with equal effectiveness.