Gupta_2011_Nat.Chem.Biol_7_120

Reference

Title : Directed evolution of hydrolases for prevention of G-type nerve agent intoxication - Gupta_2011_Nat.Chem.Biol_7_120
Author(s) : Gupta RD , Goldsmith M , Ashani Y , Simo Y , Mullokandov G , Bar H , Ben-David M , Leader H , Margalit R , Silman I , Sussman JL , Tawfik DS
Ref : Nat Chemical Biology , 7 :120 , 2011
Abstract :

Organophosphate nerve agents are extremely lethal compounds. Rapid in vivo organophosphate clearance requires bioscavenging enzymes with catalytic efficiencies of >10(7) (M(-1) min(-1)). Although serum paraoxonase (PON1) is a leading candidate for such a treatment, it hydrolyzes the toxic S(p) isomers of G-agents with very slow rates. We improved PON1's catalytic efficiency by combining random and targeted mutagenesis with high-throughput screening using fluorogenic analogs in emulsion compartments. We thereby enhanced PON1's activity toward the coumarin analog of S(p)-cyclosarin by approximately 10(5)-fold. We also developed a direct screen for protection of acetylcholinesterase from inactivation by nerve agents and used it to isolate variants that degrade the toxic isomer of the coumarin analog and cyclosarin itself with k(cat)/K(M) approximately 10(7) M(-1) min(-1). We then demonstrated the in vivo prophylactic activity of an evolved variant. These evolved variants and the newly developed screens provide the basis for engineering PON1 for prophylaxis against other G-type agents.

PubMedSearch : Gupta_2011_Nat.Chem.Biol_7_120
PubMedID: 21217689

Related information

Inhibitor PMP-MeCyC

Citations formats

Gupta RD, Goldsmith M, Ashani Y, Simo Y, Mullokandov G, Bar H, Ben-David M, Leader H, Margalit R, Silman I, Sussman JL, Tawfik DS (2011)
Directed evolution of hydrolases for prevention of G-type nerve agent intoxication
Nat Chemical Biology 7 :120

Gupta RD, Goldsmith M, Ashani Y, Simo Y, Mullokandov G, Bar H, Ben-David M, Leader H, Margalit R, Silman I, Sussman JL, Tawfik DS (2011)
Nat Chemical Biology 7 :120